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Abstract 

An entangled state of a two-particle system is a quantum state that cannot be separated—it 

cannot be written as the product of states of the individual particles. One way to tell if a system is 

entangled is to use it to violate a Bell inequality (such as the Clauser-Horne-Shimony-Holt, 

CHSH, inequality), because entanglement is necessary to violate these inequalities. However, 

there are other, easier to perform measurements that determine whether or not a system is 

entangled; an operator that corresponds to such a measurement is referred to as an entanglement 

witness. We present the theory of witness operators, and an undergraduate experiment that 

measures entanglement witnesses for the joint polarization state of two photons. We are able to 

produce states for which the expectation value of a witness operator is entangled by more than 

300 standard deviations. In order to further examine the performance of these witness operators, 

we present a simple way to generate states that closely approximate Werner states, which have a 

controllable degree of entanglement. 
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I. INTRODUCTION 

 

Entanglement is a (perhaps the) feature that distinguishes quantum mechanics from classical 

mechanics. Entangled particles have correlations that are stronger than those allowed by classical 

physics. Entanglement is necessary for a diverse range of uniquely quantum mechanical effects 

such as quantum cryptography, quantum teleportation and quantum computing.1  

 

Conceptually, to fully characterize an entangled state of a multi-particle system, including all of 

its correlations, one must describe the state of the entire system, not the states of the individual 

particles. Mathematically, entangled states are those quantum states that cannot be written as the 

product of the states of the individual particles. Thus, if ent  represents an entangled state of a 

bipartite system, then there do not exist any state vectors A  (belonging to the Hilbert space 

AH  of A) and B  (belonging to BH ) such that ent  can be written as a direct product of 

A  and B . This means that 

  ent A B      , (1) 

where   represents the direct product.  

 

In Eq. (1) ent  is an entangled pure state. It has been shown that for every bipartite pure state, 

there exists a Bell inequality that is violated;2,3 this means that there exists, at least in principle, a 
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method to experimentally detect that entanglement. However, real experimental systems never 

exist in pure states. One must assume that the state of an experiment will yield a mixed state that 

must be described by density operator ̂ .4,5 A mixed state is separable, and hence not entangled, 

if it can be written as a weighted sum of product states: 

  ˆ ˆ ˆsep i Ai Bi
i

p     , (2)  

where the ip ’s are nonnegative real numbers, and the normalization condition is that they sum to 

1. 

 

An observable that is able to detect entanglement is referred to as an entanglement witness.6,7 

Bell inequalities were (effectively) the first entanglement witnesses, but there are other, more 

efficient, observables that are capable of revealing entanglement. For example, the minimum 

number of measurements needed to measure a Bell inequality for bipartite qubits (two 2-state 

particles) is four, whereas it is possible to construct an entanglement witness for these same 

qubits that requires only three measurements.8 The reason Bell inequalities require more 

measurements is because they are capable of ruling out any local-realistic model, whereas other 

entanglement witnesses assume the validity of quantum mechanics, and merely seek to 

determine whether or not a particular system is entangled. 

 

Experiments with entangled photons have been previously performed in undergraduate 

laboratories.5,9-14 These experiments include tests of Bell inequalities, which prove that the states 

used in those experiments are entangled. However, we know of no previous undergraduate 
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experiments that measure the types of entanglement witnesses that we describe here. These 

witnesses require only three measurements, not four. In order to characterize the performance of 

our witness operators, we have developed a very simple technique that generate states with a 

controllable degree of entanglement. These states closely approximate the class of states 

commonly known as Werner states.15,16 Using these states, we demonstrate that our witness 

operators are able to detect entanglement in situations where the Clauser-Horne-Shimony-Holt, 

CHSH, inequality, which is the most commonly used Bell inequality, does not.9,10,17  

 

We begin with a discussion of the theory of entanglement witnesses. We then present two 

witness operators that are capable of detecting entanglement in the joint polarization state of two 

photons. Finally, we describe undergraduate experiments that implement measurements of these 

operators, and explore their performance. 

 

II. THEORY 

 

Here we assume a familiarity with density operators. For a description of density operators at the 

level of an advanced undergraduate see Refs. 5 and 14; for more details see Ref. 4.  

 

A. Schmidt decomposition 

 

Before discussing the general problem of identifying entanglement in arbitrary mixed state 

systems, let's first consider entanglement of pure states. Suppose that system A has dimension M, 
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and its Hilbert space AH  has basis vectors i A
 . Similarly, system B has dimension N, and BH  

has basis vectors j B
 . An arbitrary pure state of the joint system can be written as 

  

.

M N

ij i jA B
i j

M N

ij i j
i j

c

c

    

  

 

 
 (3) 

The Schmidt decomposition of   determines two new sets of vectors i A
a  and i B

b , such that  

  
R

i i i
i

a b    . (4) 

The number R is called the Schmidt rank of the system, and  min ,R M N . Note that while the 

sum in Eq. (4) is only over R states, the i A
a ’s and i B

b ’s form orthonormal bases for AH  and 

BH , respectively. Furthermore, the Schmidt coefficients i  are real and positive.7 Equation (4) 

is a simplification, because we have gone from a double sum to a single sum. The fact that the 

Schmidt decomposition of   exists is proven in Ref. 1. Note that the Schmidt decomposition 

only applies to pure states. The Schmidt rank of any pure product state is 1; any pure state with 

1R   is entangled. 

 

B. Witness operators 

 

Here we provide a description of witness operators that is sufficient for an understanding of our 

experiments. For a more complete discussion, see Refs. 3 and 7. 
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An observable Ŵ  is an entanglement witness if 

   ˆ ˆ ˆ=Tr 0sepW W    (5) 

for all separable states ˆ
sep , and  

   ˆ ˆ ˆ=Tr 0entW W   (6) 

for at least one entangled state ˆ ent .3,6,7 This means that if one measures ˆ 0W  , one knows that 

the state ̂  is entangled. 

 

There are different ways to construct witness operators. The technique that we use is to note that 

if our experimentally produced state is “close enough” (in Hilbert space) to a particular entangled 

pure state ent , it will be entangled as well. As such we construct the witness operator7 

  ˆ ˆˆ ˆ1 1ent ent entW          . (7) 

To see that this operator functions as a witness, note that 

  

   
 

ˆ ˆ ˆTr Tr

ˆ ˆTr

,

ent ent

ent ent

W

F

       
      

  

 (8) 

where we have used the normalization of the density operator, and we have defined the fidelity F 

as ˆent entF     . The fidelity is a measure of the overlap of ent  and ̂  in Hilbert space; 

we have 1F   if ˆ ent ent     and 0F   if ̂  is orthogonal to ent . Assuming that the 
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witness satisfies Eq. (5), if F exceeds the critical value   in Eq. (8), then Ŵ  is negative and 

we have identified ̂  as being an entangled state. 

 

In order to ensure that Ŵ  defined in Eq. (7) meets the definition of an entanglement witness, the 

constant   is chosen to have the minimum value possible, constrained by the fact that Ŵ  must 

satisfy Eq. (5) for all separable states: 

   ˆˆ ˆ= 1 Tr 0ent ent sepW        . (9) 

We thus require   to be given by 

  
 ˆmax Tr

ˆmax ,

ent ent sep

ent sep ent

    

   
   (10) 

where the maximization is performed over the space of all separable states. The calculation of 

the maximum in Eq. (10) is performed in Appendix A, where it is shown that   is given by the 

square of the maximum Schmidt coefficient of ent ,  2

maxi .7,18 

 

The two states we are interested in detecting are the Bell states 

   1

2
HH VV   . (11) 

These are states of two photons, in which HH  is the state corresponding to both photons being 

horizontally polarized, and VV  corresponds to both photons being vertically polarized. The 
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maximum Schmidt coefficient for either of these states is 1/ 2 , and the witness operators that 

will detect them are 

  

 

1 ˆˆ 1
2
1

1̂
2

.

W

HH HH VV VV

HH VV VV HH

     

  

 

 (12) 

 

In the laboratory we are able to perform local, projective measurements. That is, both Alice and 

Bob perform projective measurements on their respective particles. Operators that correspond to 

these measurements take the form 

  
A A B B

a a b b ab ab   (13) 

The first two terms after the 1̂  in Eq. (12) take this form, but the two terms in parentheses don’t–

they don’t correspond to local, projective measurements. Thus, we must rewrite Eq. (12) in a 

form that shows us how to measure Ŵ   by using such measurements. We accomplish this by 

recognizing that Alice and Bob are not limited to performing measurements in the horizontal-

vertical basis.  

 

Define the diagonal and antidiagonal (+45o linear), and the left- and right- circular polarization 

states as 

   1

2
D H V   ,  1

2
A H V   (14) 
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   1

2
L H i V   ,  1

2
R H i V  . (15) 

Given these, it can be shown that it is possible to rewrite our witness operator in terms of local 

projection operators as 

  




1 ˆˆ 1
2

.

W HH HH VV VV DD DD

AA AA LL LL RR RR

   

   


 (16) 

 

Finally, if we define  ,P a b  to be the joint probability that Alice measures her photon to have 

polarization a and Bob measures his photon to have polarization b, we find that the expectation 

values of the witness operators are 

  
     

      

1ˆ 1 , , ,
2

, , , .

W P H H P V V P D D

P A A P L L P R R

    

   


 (17) 

 

III. EXPERIMENTS 

 

Our experiments are similar to those performed in Ref. 8, but we use equipment that is currently 

found in many undergraduate laboratories.5,9,12,19 The experimental apparatus is shown in Fig. 1. 

A 100 mW, 405 nm laser diode pumps a pair of Type-I beta-barium borate crystals, whose axes 

are oriented at right angles with respect to each other. Down converted photons pass through a 

series of wave plates and polarizing beam splitters, before being focused onto multimode optical 

fibers and detected with single-photon counting modules. The half-wave plates in the down 
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converted beams in Fig. 1 are used for the measurements of the CHSH parameter S, and are not 

needed for the measurement of the witnesses. During the witness measurement we set their axes 

to 0, which is simpler than removing them.  

 

 

 

FIG. 1. (Color online) The experimental apparatus. Here /2 denotes a half-wave plate, BP 

denotes a birefringent plate, DC denotes down conversion crystals, BC indicates an optional 

business card, WP denotes an optional wave plate, RP denotes a Rochon polarizer, and SPCMs 

are the single-photon counting modules. 
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The polarization states of the down converted photon pairs are adjusted using techniques 

described in previous experiments;5,9 more details about the experimental apparatus can be found 

in Ref. 19. The states that we are trying to produce take the form  

     1

2
iHH e VV    . (18) 

However, our experimentally produced states are not pure. For the first set of experiments, we 

model our states as 

  
   

 
1

ˆ

1
.

2

p

p
HH HH VV VV

     


 

 (19) 

This density operator represents our photons as being in the entangled state     with 

probability p, and in an equal mixture of the states HH  and VV  with probability 1 p . A 

state of this type is produced, for example, if there is some temporal walk-off between the 

horizontal and vertical polarizations, which introduces a degree of distinguishability between 

them.  

 

With the optional wave plates removed (see Fig. 1) horizontally polarized photon pairs are 

directed to detectors A and B, and vertically polarized photons are directed to detectors A’ and 

B’. We can thus measure the probability of detecting horizontally polarized photon pairs as 

   
' ' ' '

, AB

AB A B AB A B

N
P H H

N N N N


  
 , (20) 
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where ABN  is the number of coincidence photons detected at A and B in a given time window. 

We can similarly determine  ,P V V  by replacing the numerator in this equation with ' 'A BN . The 

probabilities of detecting diagonal and antidiagonal photon pairs are obtained by inserting half-

wave plates oriented with their fast axes at 22.5o before the Rochon polarizers. To measure the 

circular polarization probabilities we insert quarter-wave plates with their fast axes oriented at 

45o. In our first set of experiments we subtract the expected number of accidental coincidences 

from our data when using Eq. (20). These accidentals are due to the fact that for two independent 

detectors, there is some probability that both of them will register photons within a coincidence 

time window t , just by pure random chance. A calculation of the expected number of 

accidental coincidences is given in Appendix B. 

 

A. Varying the phase of the state 

 

The birefringent plate in the pump beam is used to adjust the relative phase   of the pure-state 

component in our experimentally produced states [Eqs. (18) and (19)]; note that 0   yields 

  and     yields  . Figure 2 shows the experimental data for Ŵ   and S as we vary 

. The expectation values Ŵ   are obtained from the same data. The data for S is obtained 

separately because it requires different measurement settings. Our technique for obtaining the 

measurements in Fig. 2 is to set the value of , measure Ŵ   and S one after the other, then 

change  and repeat. In Fig. 2(a) we see that when we are creating states that are near   ( 
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near 0), Ŵ   indicates that the state is entangled, and Ŵ   does not. This is as we would 

expect, because Ŵ   is constructed to witness this entangled state, while Ŵ   is not. Their 

behavior switches as  approaches , and we are constructing states near  . This 

demonstrates that the entanglement witness must be properly chosen to detect the state that is 

being produced in a particular experiment. 

 

The version of the CHSH inequality that we use reveals entanglement in   when 2S  . 

However, Ŵ   does a “better” job of detecting this entanglement: Ŵ   indicates that the point 

at 1.25 rad   is entangled, while S does not. We note that at 0   in Fig. 2 

ˆ 0.4042 0.0025W     , which indicates that the state is entangled by over 160 standard 

deviations. For this same state we have 2.521 0.012S   , which violates the CHSH inequality 

by 43 standard deviations. 
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FIG. 2. (Color online) (a) Ŵ   (red circles) and Ŵ   (blue squares) are plotted as a function 

of the entangled state phase  . (b) The CHSH parameter S is plotted as a function of this same 

parameter. The points are experimental data, while the solid lines are theoretical predictions. 

Statistical (vertical) error bars are smaller than the markers. Horizontal error bars are / 40 , 

which is our best estimate of how accurately we can set 0  ; all other phases are assumed to 

have the same error bars. 

 

In Appendix C we calculate the theoretical predictions for Ŵ   and S, assuming the system is 

in state 1̂  [Eq. (19)]. This state contains the parameter p, which is the pure-state fraction 

contained in the experimentally measured states. We treat p as a free parameter, and use it to fit 
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our data for Ŵ  ; we find that 0.83 0.01p   . Once this value has been determined for Ŵ  , 

we use it to determine the theoretical predictions for Ŵ   and S. Thus, a single parameter, 

obtained by fitting one set of data, allows us to fit all three sets of data in Fig. 2. This gives us 

confidence that the states we are producing in this experiment are reasonably well described by 

Eq. (19). 

 

B. Varying the amount of entanglement 

 

In order to test how our witness operators perform, it is useful to have a way of varying the 

degree of entanglement in our experimentally produced states. One class of states that have 

variable entanglement are the Werner states, which take the form15,16 

  
1 ˆˆ 1

4
W

W W ent ent

p
p


      . (21) 

Werner states are in in the pure entangled state ent  with probability Wp , and in states of 

purely random polarization with probability 1 Wp . 

 

Our technique for creating Werner states was inspired by Ref. 20, but is distinct. We set 0  , 

so if our beams are unblocked we are producing states that approximate 

 0ent
       . If we insert something to scatter the photons from our source, we 

produce randomly polarized photons. In our experiments we use a business card to produce 

scattered photons. It is inserted into the beam after the down conversion crystal, as shown in Fig. 
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1. The photons we detect with the business card in place are not primarily down converted 

photons, but are due to the pump beam’s interaction with the card. They are either scatted pump 

photons that make it through the colored glass filters intended to filter them out, or near infra-red 

fluorescence from the card. In either case, they have random polarization and statistics.  

 

We place the card at the proper distance from the crystal to ensure that the average coincidence 

count rates on our detectors is approximately the same as with the card removed. However, with 

the card in place all of the coincidences are accidental. Thus, we cannot subtract accidental 

coincidences for this experiment. Furthermore, obtaining a sufficient number of accidental 

coincidences requires significantly higher singles count rates on each of the detectors. To adjust 

the degree of entanglement [the parameter Wp  in Eq. (21)], we put our business card on a 

translation stage that moves the card in a controllable manner in the vertical direction. The larger 

the fraction of the beam that is blocked by the card, the less entanglement in our states. 

 

In Fig. 3 we show our experimental measurements of Ŵ   and S as we vary the translation of 

the business card, and hence the degree of entanglement. We see that when the card is removed 

both Ŵ   and S indicate entanglement, while Ŵ   does not. Since the pure state contribution 

in ˆW  is  , the results shown in Fig. 3 are what we would expect. With the card completely 

out of the beam, we find ˆ 0.3577 0.0009W     , which indicates that the state is entangled by 

over 300 standard deviations, and 2.358 0.008S   , which violates the CHSH inequality by 44 

standard deviations. The mean values of these parameters indicate that the purity of the pure-
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state component of our states in this experiment is not as large as it was in the experiment 

described in Fig. 2. We attribute this, at least in part, to the fact that we are not subtracting 

accidental coincidences in this experiment. The further the card is inserted into the beam, the less 

entanglement we measure. Once the beam is completely blocked we find ˆ 1/ 4W    and 

0S  , which is what we would expect for randomly polarized photons. 

 

 

FIG. 3. (Color online) (a) Ŵ   (red circles) and Ŵ   (blue squares) are plotted as a function 

of the translation of the business card. (b) The CHSH parameter S is plotted as a function of this 

same parameter. The points are experimental data, while the solid lines are theoretical 

predictions. Statistical (vertical) error bars are smaller than the markers.  
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In Fig. 3 Ŵ   indicates that five of the measured states are entangled, while S indicates that 

only three of them are entangled. Thus, in this case Ŵ   is better at detecting weak entanglement 

than S. This is probably not surprising, as Ŵ   was specifically designed for this task, while S 

was designed to solve the more general problem of ruling out local hidden-variable theories. In 

some sense entanglement witnesses are the right “tool for the job” of detecting entanglement, at 

least when compared to Bell inequalities. 

 

The theoretical predictions for our measured quantities are presented in Appendix C, and are 

plotted in Fig. 3. Once again we fit the theory to the data for Ŵ  , and use the same fit 

parameters to present the theoretical predictions for all of the other measured quantities. We see 

that the theory works well for Ŵ  , and reasonably well for S, but not as well for Ŵ  . We 

attribute this disagreement to two factors. One is that we are not subtracting accidental 

coincidences. The other is that the theoretical prediction for a Werner state ˆW  has the state 

approaching a pure state as 1Wp  , but in our experiments this state is actually converging to a 

state of the form in Eq. (19). Thus, while we have implemented a method for creating states 

having an adjustable degree of entanglement, these states are only approximately Werner states. 

 

IV. CONCLUSIONS 
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We have experimentally measured the expectation values of two different entanglement witness 

operators Ŵ   in an experiment that is suitable for an undergraduate laboratory. We have also 

compared these measurements to measurements of the CHSH parameter S. Determining Ŵ   is 

“easier” in that they require only three measurements, as compared to four measurements for S. 

The witness operators also indicate entanglement for weakly entangled states that S does not, and 

they yield a larger violation of classical physics (in terms of the number of standard deviations a 

classical inequality is violated). As such we conclude that if one is interested only in whether or 

not a state is entangled, and not in violations of local realism, entanglement witnesses are a better 

tool than Bell inequalities. 

 

In order to perform our experiments we have developed a very simple technique for creating 

states having an adjustable amount of entanglement, which involves translating a business card 

into the detected beams. The states produced in this manner approximate Werner states. 

 

Appendix A 

 

Here we derive the expression for the witness operators given in Eq. (16). This derivation is 

based primarily on information in Refs. 7 and 18. 

 

Separable density operators are defined in Eq. (2); we can rewrite this equation as  
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   ˆ

.

sep ij A A B B
i j

ij
i j

p i i j j

p ij ij

  



 

 
 (22) 

The sum is over states that the system may be prepared in; the ij ’s need not form a basis, nor 

do they need to be orthogonal. Using Eq. (22), Eq. (10) becomes 

  
2

max ij ent
i j

p ij    .  (23) 

Let 
2

maxent ij  be the maximum value of 
2

ent ij , for all values of i and j. It must then be the 

case that 

  
2

max
max ij ent

i j

p ij    .  (24) 

Since 
2

maxent ij is constant, it can be pulled out of the sum. This yields 

  

2

max

2

max

max ,

ent ij
i j

ent

ij p

ij

  

 

 
 (25) 

where we have used the normalization of the ijp ’s. 

Note that we haven’t specified the states ij  that we are maximizing 
2

ent ij  over. Thus, we 

have gone from maximizing ˆent sep ent    over all separable states ˆ
sep , to maximizing 

2

ent ij  over all possible states ij . How has this helped us? Well, the states 
A B

ij i j   
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are pure product states. Thus we’ve reduced our problem from maximizing over all separable 

states (including separable mixed states), to maximizing over all pure product states.  

 

To perform the maximization in Eq. (25), we start by noting that we can write the entangled state 

in its Schmidt decomposition [Eq. (4)]. We can also write the pure product state ij  in the basis 

that is determined by the Schmidt decomposition of ent  (although it is not necessarily 

diagonal in this basis) 

  

.

M N
a b
m m n n

m n

M N
a b
m n m n

m n

ij c a c b

c c a b

       
   



 

 
 (26) 

Because the states are normalized, we have 

  
2 2

1
M N

a b
m n

m n

c c    . (27) 

Using the fact that the Schmidt coefficients are real and positive, Eq. (25) becomes 

  

 

2

2

2
2

max

max

max

max .

R M N
a b

k k k m n m n
k m n

R
a b

k k k
k

R
a b

k k k
k

a b c c a b

c c

c c

      
  

 

 

  





 (28) 

We now use the Cauchy-Schwarz inequality and obtain 
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 

 

2 2 2

max

2

max

max

,

R R
a b

k k k
k k

k

c c  

 

 
 (29) 

where we have used Eq. (27), and the fact that  min ,R M N . Choosing equality on this 

condition guarantees that Eq. (5) is satisfied. While the proof presented here shows that 

 2

maxk   , and equality is chosen to safely guarantee that our witness operator is positive for 

separable states, a more general proof shows that indeed  2

maxk   .18 

 

Appendix B 

 

Here we calculate the expected number of accidental coincidences, due to the finite time window 

used for coincidence detection.  

 

If the detection probability is small, we can write the probability of the detection of a photon in 

time window t  as the average rate of detections AR  multiplied by t : A AP R t  . The rate of 

detections is the total number of detections AN  divided by the total counting time T: 

A AR N T . The same mathematics applies to detections at B, and coincidence detections at A 

and B. If the detections at A and B are independent, the probability of coincidence detections is 

simply that due to random accidentals, and it factorizes 
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    
  

2
.

AB A B

AB A B

A BAB

P P P

R t R t R t

N t N tN t

T T



   

 


 (30) 

Solving for the expected number of accidental coincidences yields 

  A B
AB

N N t
N

T


  .  (31) 

Thus, from the measured coincidence window, the counting time and the counts on two 

detectors, we can estimate the expected number of accidental coincidences and subtract it from 

our measured value. We do this for all four sets of measured coincidences in Eq. (20) when 

determining the probabilities in our first experiment.  

 

The coincidence window is measured by illuminating the detectors with light that is known to be 

random and uncorrelated. In our case this is scattered light from a business card inserted into the 

pump beam. Each coincidence window is measured separately, and all are approximately 8 ns.  

 

Appendix C 

 

Here we derive the theoretical predictions that are presented in Figs. 2 and 3. 

 

Start with witness operators in the form of Eq. (12), and assume we’re in the state 

   ˆ
pure      , where     is given by Eq. (18): 
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   
 

2

1 ˆˆ ˆTr 1
2

1
ˆTr

2
1

.
2

pure
pure

pure

W   

 



          

       

    

 (32) 

Expanding, this becomes 

  

   2

2

1 1ˆ
2 4
1 1

1
2 4

1
cos .

2

i

pure

i

W HH VV HH e VV

e

 



   

  

 

 (33) 

Now assume we’re in state 1̂  of Eq. (19). The expectation value for the witness operators is 

  

 
 

 

1
ˆ ˆ ˆTr

1ˆ ˆˆTr Tr
2

1 1 ˆˆ Tr 1
2 2

.

pure

pure

W W

p
p W W HH HH VV VV

p
p W

HH HH VV VV

 

 

  

 

         

        
  

 (34) 

Using Eq. (33) and expanding, we find 

  

 
2 2

1 1ˆ cos Tr
2 2 2

1 1 1 1 1
cos

2 2 2 2 2 2

cos .
2

p p
W HH HH VV VV

HH VV

p p

p



 

          
 

     
 

             
    

 







 (35) 
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This is the prediction for Ŵ   that is used in Fig 2. 

 

Next we find the prediction for the CHSH parameter S, assuming the system is in the state 1̂  of 

Eq. (19). First define the state  , which is linearly polarized at an angle   w.r.t. the horizontal: 

  cos sinH V      .  (36) 

Next define the Hermitian polarization operator ˆ  , which corresponds to a measurement of this 

polarization. States found to be polarized along   have eigenvalue 1, while states polarized 

along / 2    , which is perpendicular to  , have eigenvalue 1 . As such, we can write 

ˆ   as 

  ˆ  
        .  (37) 

Using this and Eq. (36), it is possible to show that the matrix elements of ˆ   in the horizontal-

vertical basis are 

  ˆ cos 2H H    (38) 

  ˆ cos 2V V     (39) 

  ˆ ˆ sin 2H V V H      .  (40) 
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The joint polarization operator corresponding to Alice measuring polarization A , and Bob 

measuring polarization B  is ˆ ˆ ˆ
A B A B

AB A B
      , and the expectation value of a measurement 

corresponding to ˆ
A B

AB
  , assuming the system is in the pure state    , is 

  

     ˆ, ,

1 ˆ ˆ ˆ ˆ
2

ˆ ˆ ˆ ˆ

cos 2 cos 2 sin 2 sin 2 cos .

A B

A B A B

A B A B

AB
pure A B

A B A B

i A B i A B

A B A B

E

HH HH VV VV

e VV HH e HH VV

 

   

  
   

        

     

      
      

 (41) 

We note that this expectation value explicitly depends on the phase angle   in the state    . 

 

Now assume we’re in state 1̂  of Eq. (19). 

  

 
   

 

   

1ˆ ˆ ˆ, , Tr

ˆ ˆTr

1 ˆ ˆTr
2

1 ˆ ˆ ˆ ˆ, , .
2

A B

A B

A B

A B A B

A B
A B

A B

A B

A B A B
pure A B

E

p

p
HH HH VV VV

p
pE HH HH VV VV

 

 

 

   

        
        
      


         

 (42) 

Using the matrix elements of ˆ   and Eq. (41), we find 

  

   
  

, , cos 2 cos 2 sin 2 sin 2 cos

1 cos 2 cos 2

cos 2 cos 2 sin 2 sin 2 cos .

A B A B A B

A B

A B A B

E p

p

p

         

   

      

 (43) 

The CHSH parameter, as a function of the phase  , is then10,17 
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    , , , , 0, , 0, ,
4 8 4 8 8 8

S E E E E
                               

       
 . (44) 

This is the prediction for S that is used in Fig 2. 

 

The expectation values of our witnesses, for the Werner state in Eq. (21) are given by 

  

 
   

 

ˆ ˆ ˆTr

1ˆ ˆˆTr Tr
4

1 1 ˆˆ Tr 1 Tr .
4 2

W

W
W pure

W
W

pure

W W

p
p W W

p
p W

 

 

  

 


  

          

 (45) 

Using Eq. (33),  ˆTr 1 4 , and the fact that the trace of a normalized state is 1 yields 

  
1 1ˆ cos

2 2 4
W W Wp p p

W   
    . (46) 

Finally, we note that when we are performing the measurements for the Werner state, we set 

0  , so 

  
1ˆ

2 4
W Wp p

W  
   . (47) 

 

The expectation value of ˆ
A B

AB
  , assuming the system to be in a Werner state with 0  , is 

  

 

   

 

ˆ ˆ ˆ, Tr

1ˆ ˆ ˆ ˆTr 0 0 Tr
4

1 ˆ ˆ, ,0 Tr .
4

A B

A B A B

A B

A B
A B W

A B A BW
W

A BW
W pure A B

E

p
p

p
p E

 

   

 

       
            

        

 (48) 
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Computing the trace in the horizontal-vertical basis, and using the matrix elements of ˆ  , we 

find 

  

   

 

1 ˆ ˆ, , ,0
4

ˆ ˆ ˆ ˆ ˆ ˆ

, ,0 .

A B

A B A B A B

A BW
A B W pure A B

A B A B A B

W pure A B

p
E p E HH HH

HV HV VH VH VV VV

p E

 

     

        

         
  

 (49) 

Since S is just a linear combination of expectation values, we find that for a Werner state 

  2 2W W pure WS p S p   , (50) 

where we have used the value of S obtained when the system is prepared in state  0    . 

 

To obtain the fits to the data in Fig 3, we first invert Eq. (47) to find Wp  in terms of Ŵ  , so 

that we can determine the value of Wp  for each of the experimental measurements of Ŵ   (i.e., 

as a function of the translation of the business card). The pure state fraction Wp  should be 

proportional to the area of the unblocked portion of the beams, and for Gaussian beams this area 

should be an error function. We thus fit Wp  to an error function, with the fit parameters being the 

width of the beam, the location of the center of the beam, and the maximum pure state fraction. 

This fit is then used to determine the theoretical predictions for Ŵ   and S [Eqs. (47) and (50)] 

that are used in Fig 3. 
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