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An entangled state of a two-particle system is a quantum state that cannot be separated, meaning it

cannot be written as the product of states of the individual particles. One way to tell if a system is

entangled is to use it to violate a Bell inequality (such as the Clauser-Horne-Shimony-Holt, CHSH,

inequality), because entanglement is necessary for such a violation. However, there are other,

easier-to-perform measurements that determine whether or not a system is entangled. An operator

that corresponds to such a measurement is referred to as an entanglement witness. Here, we present

the theory of witness operators and an undergraduate experiment that measures entanglement

witnesses for the joint polarization state of two photons. We are able to produce states for which

the expectation value of a witness operator is entangled by more than 300 standard deviations. In

order to further examine the performance of these witness operators, we present a simple way to

generate states that closely approximate Werner states, which have a controllable degree of

entanglement. VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4936623]

I. INTRODUCTION

Entanglement is one of the most important features that
distinguishes quantum mechanics from classical mechanics.
Entangled particles have correlations that are stronger than
those allowed by classical physics. Entanglement is neces-
sary for a diverse range of uniquely quantum mechanical
effects such as quantum teleportation and quantum
computing.1,2

Conceptually, to fully characterize an entangled state of a
multi-particle system, including all of its correlations, one
must describe the state of the entire system, not just the states
of the individual particles. Mathematically, entangled states
are those quantum states that cannot be written as the prod-
uct of the states of the individual particles. Thus, if jwenti
represents an entangled state of a bipartite system, then there
do not exist any state vectors jwiiA (belonging to the Hilbert
space HA of A) and jwjiB (belonging to HB) such that jwenti
can be written as a direct product of jwiiA and jwjiB. This
means that

jwenti 6¼ jwiiA � jwjiB; (1)

where � represents the direct product.
In Eq. (1), jwenti is an entangled pure state. It has been

shown that for every bipartite, entangled pure state, there
exists a Bell inequality that is violated.3,4 Thus, there exists,
at least in principle, a method to experimentally detect the
entanglement. However, real experimental systems never
exist in pure states. One must assume that the state of an
experiment will yield a mixed state that must be described
by density operator q̂.5,6 A mixed state is separable, and
hence not entangled, if it can be written as a weighted sum
of product states as in

q̂sep ¼
X

k

pkq̂Ak � q̂Bk; (2)

where the pk’s are nonnegative real numbers, and the nor-
malization condition is that Rk pk ¼ 1.

An observable that is able to detect entanglement is referred
to as an entanglement witness.7,8 Bell inequalities were (effec-
tively) the first entanglement witnesses, but there are other,
more efficient observables that are capable of revealing entan-
glement. For example, the minimum number of measurements
needed to measure a Bell inequality for bipartite qubits (two
2-state particles) is four, whereas it is possible to construct an
entanglement witness for these same qubits that requires only
three measurements.9 A violation of a Bell inequality rules
out any local-realistic model. It is a very general result predi-
cated on a minimum of assumptions about the underlying sys-
tem being measured. Entanglement witnesses assume the
validity of quantum mechanics (a much more restrictive set of
assumptions) and merely seek to determine whether or not a
particular system is entangled. Thus, it is not surprising that
measuring entanglement witnesses would involve fewer meas-
urements than a Bell inequality requires.

Experiments with entangled photons have been previously
performed in undergraduate laboratories.6,10–15 These experi-
ments include tests of Bell inequalities, which prove that the
states used in those experiments are entangled. However, we
are unaware of any previous undergraduate experiments that
measure the types of entanglement witnesses that we
describe here. Furthermore, these witnesses require only
three measurements (instead of four). In order to characterize
the performance of our witness operators, we have developed
a straightforward technique that generates states with a con-
trollable degree of entanglement. These states closely ap-
proximate the class of states commonly known as Werner
states.16,17 Using these states, we demonstrate that our wit-
ness operators are able to detect entanglement in situations
where the Clauser-Horne-Shimony-Holt (CHSH) inequality,
the most commonly used Bell inequality, does not.10,11,18

We begin with a discussion of the theory of entanglement
witnesses. We then present two witness operators that are ca-
pable of detecting entanglement in the joint polarization state
of two photons. Finally, we describe undergraduate experi-
ments that implement measurements of these operators and
explore their performance.
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II. THEORY

Here, we assume a familiarity with density operators,
and note the reader will find a description of density opera-
tors in Refs. 5, 6, and 15.

A. Schmidt decomposition

Before discussing the general problem of identifying
entanglement in arbitrary mixed state systems, let’s first con-
sider entanglement of pure states. Suppose that system A has
dimension M and its Hilbert space HA has basis vectors jaiiA.
Similarly, system B has dimension N and HB has basis vec-
tors jbjiB. An arbitrary pure state of the joint system can be
written as

jwi ¼
XM

i

XN

j

cijjaiiA � jbjiB

¼
XM

i

XN

j

cijjaibji : (3)

The Schmidt decomposition (essentially the singular value
decomposition) of jwi determines two new sets of vectors
jaiiA and jbiiB, such that1,8

jwi ¼
XR

i

kijaibii: (4)

The number R is called the Schmidt rank of the state, and it
is equal to the number of nonzero Schmidt coefficients ki

[R � minðM;NÞ].8 Note that while the sum in Eq. (4) is only
over R states with nonzero Schmidt coefficients, the Schmidt
decomposition determines jaiiA’s and jbiiB’s that form ortho-
normal bases for HA and HB, respectively. Furthermore, the
Schmidt coefficients are real and positive.8

Equation (4) is a simplification over Eq. (3) because we
have gone from a double sum to a single sum. The fact that
the Schmidt decomposition of jwi exists is proved in Ref. 1.
Note that the Schmidt decomposition only applies to pure
states. The Schmidt rank of any pure product state is 1, while
any pure state with R > 1 is entangled.

B. Witness operators

Here, we provide a description of witness operators that is
sufficient for an understanding of our experiments. For a
more complete discussion, see Refs. 4 and 8.

An observable Ŵ is an entanglement witness if

hŴi ¼ TrðŴ q̂sepÞ � 0 (5)

for all separable states q̂sep, and

hŴi ¼ TrðŴ q̂entÞ < 0 (6)

for at least one entangled state q̂ent.
4,7,8 This means that if

one measures hŴi < 0, one knows that the state q̂ is
entangled.

There are different ways to construct witness operators.
The technique we use is to note that if our experimentally
produced state is “close enough” (in Hilbert space) to a

particular entangled pure state jwenti, it will be entangled as
well. As such we construct the witness operator8

Ŵ ¼ a1̂ � q̂ent ¼ a1̂ � jwentihwentj: (7)

To see that this operator functions as a witness, note that

hŴi ¼ Trðaq̂Þ � Tr½ðjwentihwentjÞq̂�
¼ aTrðq̂Þ � hwentjq̂jwenti
¼ a� F; (8)

where we have used the normalization of the density opera-
tor and we have defined the fidelity F as F ¼ hwentjq̂jwenti.
The fidelity is a measure of the overlap of jwenti and q̂ in
Hilbert space. We have F ¼ 1 if q̂ ¼ jwentihwentj and F ¼ 0
if q̂ is orthogonal to jwenti. Assuming that the witness satis-
fies Eq. (5), if F exceeds the critical value a in Eq. (8), then
hŴi is negative and we have identified q̂ as being an
entangled state.

In order to ensure that Ŵ defined in Eq. (7) meets the defi-
nition of an entanglement witness, the constant a is chosen
to have the minimum value possible, constrained by the fact
that Ŵ must satisfy Eq. (5) for all separable states, or

hŴi ¼ ah1̂i � Trðjwentihwentjq̂sepÞ � 0: (9)

We thus require a to be given by

a ¼ max
q̂sep

Trðjwentihwentjq̂sepÞ

¼ max
q̂sep

hwentjq̂sepjwenti ; (10)

where the maximization is performed over the space of all
separable states. The calculation of the maximum in Eq. (10)
is performed in Appendix A, where it is shown that a is
given by the square of the maximum Schmidt coefficient of
jwenti, k2

max.8,19

The two states we are interested in detecting are the Bell
states

jU6i ¼ 1ffiffiffi
2
p jHHi6jVVið Þ: (11)

These are states of two photons in which jHHi is the state
corresponding to both photons being horizontally polarized
and jVVi corresponds to both photons being vertically polar-
ized. The maximum Schmidt coefficient for either of these
states is 1=

ffiffiffi
2
p

, and the witness operators that will detect
them are

Ŵ
6 ¼ 1

2
1̂ � jU6ihU6j

¼ 1

2
1̂ � jHHihHHj � jVVihVVj
�

7 jHHihVVj þ jVVihHHjð Þ �: (12)

In the laboratory, we are able to perform local, projective
measurements. The probability of obtaining a particular mea-
surement outcome from such a measurement is given by the
expectation value of the projector onto the state correspond-
ing to the measurement. This is calculated using the density
operator as
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PðwÞ ¼ Trðjwihwjq̂Þ: (13)

If both Alice and Bob perform projective measurements on
their respective particles, projection operators that corre-
spond to these measurements take the form

jaiAAhaj � jbiBBhbj ¼ jabihabj: (14)

The first two terms after the 1̂ in Eq. (12) take this form,
but the two terms in parentheses don’t, as they don’t corre-
spond to local, projective measurements. Thus, we must

rewrite Eq. (12) in a form that shows us how to measure Ŵ
6

by using such measurements. We accomplish this by recog-
nizing that Alice and Bob are not limited to performing
measurements in the horizontal-vertical basis.

We define the diagonal (D) and antidiagonal (A) (i.e.,
645� linear), and the left-circular (L) and right-circular (R)
polarization states as

jDi ¼ 1ffiffiffi
2
p jHi þ jVið Þ; jAi ¼ 1ffiffiffi

2
p jHi � jVið Þ (15)

and

jLi ¼ 1ffiffiffi
2
p jHi þ ijVið Þ; jRi ¼ 1ffiffiffi

2
p jHi � ijVið Þ: (16)

Given these, it can be shown that it is possible to rewrite our
witness operator in terms of local projection operators as

Ŵ
6 ¼ 1

2
1̂ � jHHihHHj � jVVihVVj7 jDDihDDjð
�
þ jAAihAAj � jLLihLLj � jRRihRRj Þ�: (17)

Finally, if we define Pða; bÞ to be the joint probability that
Alice measures her photon to have polarization a and Bob
measures his photon to have polarization b, we find that the
expectation values of the witness operators are

hŴ6i ¼ 1

2
1� P H;Hð Þ � P V;Vð Þ7 P D;Dð ÞþP A;Að Þ

��
� P L; Lð Þ � P R;Rð Þ�g: (18)

III. EXPERIMENTS

Our experiments are similar to those performed in Ref. 9,
but we use equipment that is currently found in many under-
graduate laboratories.6,10,13,20 The experimental apparatus is
shown in Fig. 1. A 100-mW, 405-nm laser diode pumps a pair
of type-I beta-barium borate crystals, whose axes are oriented
at right angles with respect to each other. Down-converted
photons pass through a series of wave plates and polarizing
beam splitters before being focused onto multimode optical
fibers and detected with single-photon counting modules. The
half-wave plates in the down-converted beams in Fig. 1 are
used for the measurements of the CHSH parameter S and are
not needed for the measurement of the witnesses. During the
witness measurement, we set their fast axes to 0� with respect
to the horizontal, which has no effect on the witness measure-
ments, and is simpler than removing them.

The polarization states of the down converted photon pairs are
adjusted using techniques described in previous experiments.6,10

More details about the experimental apparatus can be found in
Ref. 20. The states that we are trying to produce take the form

jU /ð Þi ¼ 1ffiffiffi
2
p jHHi þ ei/jVVi
� �

: (19)

However, our experimentally produced states are not pure.
For the first set of experiments, we model our states as

q̂1 ¼ pjU /ð ÞihU /ð Þj þ 1� p

2
jHHihHHj þ jVVihVVjð Þ :

(20)

This density operator represents our photons as being in the
entangled state jUð/Þi with probability p, and in an equal
mixture of the states jHHi and jVVi with probability 1� p.
A state of this type is produced, for example, if there is some
temporal walk-off between the horizontal and vertical polar-
izations, which introduces a degree of distinguishability
between them.

With the removable wave plates removed (see Fig. 1) hor-
izontally polarized photon pairs are directed to detectors A
and B, and vertically polarized photons are directed to detec-
tors A0 and B0. We can thus measure the probability of detect-
ing horizontally polarized photon pairs as

P H;Hð Þ ¼ NAB

NAB þ NA0B þ NAB0 þ NA0B0
; (21)

where NXY is the number of coincidence photons detected at
X and Y in a given time window. We can similarly determine
PðV;VÞ by replacing the numerator in this equation with
NA0B0 . The probabilities of detecting diagonal and anti-
diagonal photon pairs are obtained by inserting half-wave
plates oriented with their fast axes at 22.5� before the
Rochon polarizers. To measure the circular polarization

Fig. 1. (Color online) Schematic diagram of the experimental apparatus.

Here, k/2 denotes a half-wave plate, BP denotes a birefringent plate, DC
denotes down conversion crystals, BC indicates a removable business card,

WP denotes a removable wave plate, RP denotes a Rochon polarizer, and

SPCMs are single-photon counting modules.
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probabilities, we insert quarter-wave plates with their fast
axes oriented at 45�. In our first set of experiments, we sub-
tract the expected number of accidental coincidences from
our data when using Eq. (21). These accidentals are due to
the fact that for two independent detectors, there is some
probability that both of them will register photons within a
coincidence time window Dt just by pure random chance,
even if they are illuminated with uncorrelated fields. It is not
necessary to subtract accidental coincidences to observe
entanglement, but the agreement between theory and experi-
ment is improved if they are subtracted. A calculation of the
expected number of accidental coincidences is given in
Appendix B.

A. Varying the phase of the state

The birefringent plate in the pump beam is mounted on a
tilt stage with a micrometer and used to adjust the relative
phase / of the pure-state component in our experimentally
produced states of Eqs. (19) and (20). Note that / ¼ 0 yields
jUþi and / ¼ p yields jU�i. The techniques described in
Refs. 6 and 10 allow us to determine the tilt angles corre-
sponding to / ¼ 0 and / ¼ p. We linearly extrapolate
between these two tilt angles to set the phase angle of the
state.

Figure 2 shows the experimental data for hŴ6i and S as
we vary /. The expectation values hŴ6i are obtained from
the same data. The data for S are obtained separately,
because it requires different measurement settings. Our tech-
nique for obtaining the measurements in Fig. 2 is to set the
value of /, measure hŴ6i and S one after the other, then
change / and repeat. In Fig. 2(a), we see that when we are
creating states that are near jUþi (/ near 0), the

measurements of hŴþi indicate that the state is entangled,
while the measurements of hŴ�i do not. This is as we would
expect, because Ŵ

þ
is constructed to witness this entangled

state, while Ŵ
�

is not. Their behavior switches as /
approaches p, and we are creating states near jU�i. This
demonstrates that the entanglement witness must be properly
chosen to detect the state that is being produced in a particu-
lar experiment.

The version of the CHSH inequality that we use reveals
entanglement in jUþi when S > 2. However, Ŵ

þ
does a

“better” job of detecting this entanglement as hŴþi indicates
that the point at / ffi 1:25 rad is entangled, while S does not.
We note that at / ¼ 0 in Fig. 2 we have hŴþi ¼ �0:4042
60:0025, which indicates that the state is entangled by over
160 standard deviations. For the same state, we have
S ¼ 2:52160:012, which violates the CHSH inequality by
43 standard deviations. Note that the degree to which the
measurements violate the classical inequalities are independ-
ent of experimental errors involved in creating particular
states, because these inequalities are independent of the
underlying state of the system.

In Appendix C, we calculate the theoretical predictions for
hŴ6i and S, assuming the system is in state q̂1 of Eq. (20).
This state contains the parameter p, which is the pure-state
fraction contained in the experimentally measured states. We
treat p as a free parameter, and use it to fit our data for
hŴþi, and we find that p ¼ 0:8360:01. Once this value has
been determined for hŴþi, we use it to determine the theo-
retical predictions for hŴ�i and S. Thus, a single parameter,
obtained by fitting one set of data, allows us to fit all three
sets of data in Fig. 2. This gives us confidence that the states
we are producing in this experiment are reasonably well
described by Eq. (20).

B. Varying the amount of entanglement

In order to test how our witness operators perform, it is
useful to have a way of varying the degree of entanglement
in our experimentally produced states. One class of states
that have variable entanglement are Werner states, which
take the form16,17

q̂W ¼ pW jwentihwentj þ
1� pW

4
1̂ : (22)

Werner states are in the pure entangled state jwenti with
probability pW , and in states of purely random polarization
with probability 1� pW .

Our technique for creating Werner states was inspired by
Ref. 21, but is distinct. We set / ¼ 0 so if our beams are
unblocked we are producing states that approximate
jwenti ¼ jUð/ ¼ 0Þi ¼ jUþi. If we insert something to cause
photons from our source to scatter multiple times, we pro-
duce randomly polarized photons. In our experiments, we
use a standard, cardboard business card to produce scattered
photons. It is inserted into the beam after the down-
conversion crystal, as shown in Fig. 1. The photons we detect
with the business card in place are not primarily down-
converted photons, but are now due to the pump beam’s
interaction with the card. They are either scattered pump
photons that make it through the colored glass filters
intended to filter them out or near infra-red fluorescence
from the card. In either case, they have random polarization
and statistics.

Fig. 2. (Color online) (a) hŴþi (circles) and hŴ�i (squares) are plotted as a

function of the entangled state phase /. (b) The CHSH parameter S is plotted

as a function of this same parameter. The points are experimental data while

the solid lines are theoretical predictions. Statistical (vertical) error bars would

be smaller than the markers and are not shown. Horizontal error bars are

6p=40, which is our best estimate of how accurately we can set / ¼ 0. All

other phases are assumed to have the same error bars.
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We place the card at the proper distance from the crystal
to ensure that the average coincidence count rates on our
detectors are approximately the same as with the card
removed. However, with the card fully inserted, all of the
measured coincidences are accidental. Thus, we cannot sub-
tract accidental coincidences for this experiment or we
would have an average of 0 coincidences with the card fully
inserted. To adjust the degree of entanglement, or the param-
eter pW in Eq. (22), we put our business card on a translation
stage that moves the card in a controllable manner in the ver-
tical direction; the larger the fraction of the beam that is
blocked by the card, the less entanglement in our states.

In Fig. 3, we show our experimental measurements of

hŴ6i and S as we vary the translation of the business card,
and hence the degree of entanglement. We see that when the

card is removed both hŴþi and S indicate entanglement,

while hŴ�i does not. Since the pure state contribution in q̂W

is jUþi, the results shown in Fig. 3 are what we would
expect. With the card completely out of the beam, we find

hŴþi ¼ �0:357760:0009, which indicates that the state is
entangled by over 300 standard deviations, and S¼2:358
60:008, which violates the CHSH inequality by 44 standard
deviations. The mean values of these parameters indicate
that the purity of the pure-state component of our states in
this experiment is not as large as it was in the experiment
described in Fig. 2. We attribute this, at least in part, to the
fact that we are not subtracting accidental coincidences in
this experiment. This absence of subtraction is necessary to
ensure that we properly characterize the behavior of the state
with the card fully inserted (the measured photons come
from the scattering source and have random polarization).
However, not subtracting the accidentals decreases the
agreement between theory and experiment when the card is

removed (the measured photons come from the down con-
version source and are polarization entangled).

As is seen in Fig. 3, the further the card is inserted into the
beam, the less entanglement we measure. Once the beam is
completely blocked we find hŴ6i ffi 1=4 and S ffi 0, which
is what we would expect for randomly polarized photons.

In Fig. 3, hŴþi indicates that five of the measured states
are entangled, while S indicates that only three of them are
entangled. Thus, in this case Ŵ

þ
is better at detecting weak

entanglement than S. This is probably not surprising, as Ŵ
þ

was specifically designed for this task, while S was designed
to solve the more general problem of ruling out local hidden-
variable theories. In some sense, entanglement witnesses are
the “right tool for the job” of detecting entanglement, at least
when compared to Bell inequalities.

The theoretical predictions for our measured quantities are
presented in Appendix C and are plotted in Fig. 3. Once again
we fit the theory to the data for hŴþi and use the same fit pa-
rameters to present the theoretical predictions for all of the
other measured quantities. We see that the theory works well
for hŴþi, and reasonably well for S, but not as well for hŴ�i.
We attribute this disagreement to two factors. One is that we
are not subtracting accidental coincidences. The other is that
the theoretical prediction for a Werner state q̂W has the state
approaching a pure state as pW ! 1, but in our experiments
this state is actually converging to a state of the form in Eq.
(20). Thus, while we have implemented a method for creating
states having an adjustable degree of entanglement, these
states are only approximately Werner states.

IV. CONCLUSIONS

We have experimentally measured the expectation values of
two different entanglement witness operators hŴ6i in an
experiment that is suitable for an undergraduate laboratory. We
have also compared these measurements to measurements of
the CHSH parameter S. Determining hŴ6i is “easier” in that
they require only three measurements, as compared to four
measurements for S. The witness operators also indicate entan-
glement for weakly entangled states that S does not, and they
yield a larger violation of classical physics (in terms of the
number of standard deviations a classical inequality is violated).
As such, we conclude that if one is interested only in whether
or not a state is entangled, and not in violations of local realism,
entanglement witnesses are a better tool than Bell inequalities.

In order to perform our experiments, we have developed a
very simple technique for creating states having an adjusta-
ble amount of entanglement, which involves translating a
business card into the detected beams. The states produced
in this manner approximate Werner states.
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APPENDIX A: CALCULATING THE WITNESS

OPERATORS

Here, we derive the expression for the witness operators
given in Eq. (17). This derivation is based primarily on infor-
mation in Refs. 8 and 19.

Fig. 3. (Color online) (a) hŴþi (circles) and hŴ�i (squares) are plotted as a

function of the translation of the business card. (b) The CHSH parameter S
is plotted as a function of this same parameter. The points are experimental

data while the solid lines are theoretical predictions. Statistical (vertical)

error bars would be smaller than the markers and are not shown.

91 Am. J. Phys., Vol. 84, No. 2, February 2016 M. N. Beck and M. Beck 91



Begin by writing the density operator q̂Ak in Eq. (2) as a
weighted sum of pure-state density operators

q̂Ak ¼
X

i

akijiiAAhij: (A1)

The sum is over states in which the system may be prepared.
The jiiA’s need not form a basis, nor do they need to be or-
thogonal. We also write a similar expression for q̂Bk. The
density operator q̂sep in Eq. (2) can then be rewritten as

q̂sep ¼
X

k

pk

X
i

X
j

akibkjðjiiAAhijÞ � ðjjiBBhjjÞ

¼
X

i

X
j

�X
k

pkakibkj

�
jijihijj : (A2)

Defining pij to be equal to the sum in parentheses, we find

q̂sep ¼
X

i

X
j

pijjijihijj : (A3)

Using Eq. (A3), Eq. (10) becomes

a ¼ max
pij;jiji

X
i

X
j

pijjhwentjijij
2; (A4)

where we are maximizing over separable states (expressed as

combinations of pij and jiji). Let jhwentjijij
2
max be the maxi-

mum value of jhwentjijij
2
, for all values of i and j. It must

then be the case that

a � max
pij;jiji

X
i

X
j

pijjhwentjijij
2
max: (A5)

Since jhwentjijij
2
max is constant it can be pulled out of the

sum, yielding

a � max
pij;jiji
jhwentjijij

2
max

X
i

X
j

pij

¼ max
jiji
jhwentjijij

2 ; (A6)

where we have used the normalization of the pij’s.
Note that we haven’t specified the states jiji that we are

maximizing jhwentjijij
2

over. Thus, we have gone from maxi-
mizing hwentjq̂sepjwenti over all separable states q̂sep to maxi-
mizing jhwentjijij

2
over all possible states jiji. This has helped

because the states jiji ¼ jiiA � jjiB are pure product states.
Thus, we’ve reduced our problem from maximizing over all
separable states (including separable mixed states) to maximiz-
ing over all pure product states.

To perform the maximization in Eq. (A6), we start by not-
ing that we can write the entangled state in its Schmidt
decomposition of Eq. (4). We can also write the pure product
state jiji in the basis that is determined by the Schmidt
decomposition of jwenti (although it is not necessarily diago-
nal in this basis) as

jiji ¼
�XM

m

ca
mjamiA

�
�
�XN

n

cb
njbniB

�

¼
XM

m

XN

n

ca
mcb

njambni : (A7)

Because the states are normalized, we have

XM

m

jca
mj

2 ¼
XN

n

jcb
nj

2 ¼ 1: (A8)

Using the fact that the Schmidt coefficients are real and posi-
tive, Eq. (A6) becomes

a � max
ca

m;c
b
n

				
�XR

k

kkhakbkj
��XM

m

XN

n

ca
mcb

njambni
�				

2

¼ max
ca

k
;cb

k

				
XR

k

kkca
kcb

k

				
2

� max
ca

k
;cb

k

k2
max

XR

k

ca
kcb

k

					
					
2

; (A9)

where, again, k2
max is the square of the maximum Schmidt

coefficient of jwenti. We now use the Cauchy-Schwarz
inequality and obtain

a � max
ca

k
;cb

k

k2
max

XR

k

jca
k j

2
XR

k

jcb
k j

2

� k2
max; (A10)

where we have used Eq. (A8), and the fact that
R � minðM;NÞ. Choosing equality on this condition guaran-
tees that Eq. (5) is satisfied. While the proof presented here
shows that a � k2

max, and equality is chosen to safely guaran-
tee that our witness operator is positive for separable states,
a more general proof shows that indeed a ¼ k2

max.19

APPENDIX B: ACCIDENTAL COINCIDENCES

Here, we calculate the expected number of accidental
coincidences due to the finite time window used for coinci-
dence detection.

If the detection probability is small, we can write the prob-
ability of the detection of a photon in time window Dt as the
average rate of detections RA multiplied by Dt, as
PA ¼ RADt. The rate of detections is the total number of
detections NA divided by the total counting time T, or
RA ¼ NA=T. The same mathematics applies to detections at
B, and coincidence detections at A and B. If the detections at
A and B are independent, the probability of coincidence
detections is simply that due to random accidentals, and it
factorizes as

PAB ¼ PAPB

RABDt ¼ RADtð Þ RBDtð Þ
NABDt

T
¼ NADtð Þ NBDtð Þ

T2
:

(B1)

Solving for the expected number of accidental coincidences
yields

NAB ¼
NANBDt

T
: (B2)

Thus, from the measured coincidence window, the counting
time, and the counts on two detectors, we can estimate the
expected number of accidental coincidences and subtract it
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from our measured value. We do this for all four sets of
measured coincidences in Eq. (21) when determining the
probabilities in our first experiment.

The coincidence window is measured by illuminating the
detectors with light that is known to be random and uncorre-
lated. In our case, this is scattered light from a business card
inserted into the pump beam. Each coincidence window is
measured separately, and all are approximately 8 ns.

APPENDIX C: THEORETICAL PREDICTIONS

Here, we derive the theoretical predictions that are pre-
sented in Figs. 2 and 3.

Start with witness operators in the form of Eq. (12), and
assume we are in the state q̂pure ¼ jUð/ÞihUð/Þj, where
jUð/Þi is given by Eq. (19). The expectation values of the
witness operators are then

hŴ6ipure ¼ Tr
1

2
1̂ � jU6ihU6j

� �
q̂pure


 �

¼ 1

2
� Tr jU6ihU6j

� �
q̂pure

h i

¼ 1

2
� jhU6jU /ð Þij2 : (C1)

Expanding, this becomes

hŴ6ipure ¼
1

2
� 1

4
j hHHj6hVVjð Þ jHHi þ ei/jVVi

� �
j2

¼ 1

2
� 1

4
j16ei/j2

¼ 7
1

2
cos / : (C2)

Now assume we are in state q̂1 of Eq. (20). The expectation
value for the witness operators is

hŴ6i ¼ Tr Ŵ
6
q̂1

� 

¼ pTr Ŵ
6
q̂pure

h i
þ 1� p

2
Tr

	 Ŵ
6 jHHihHHj þ jVVihVVjð Þ

h i

¼ phŴ6ipure þ
1� p

2
Tr

1

2
1̂ � jU6ihU6j

� �


	 jHHihHHj þ jVVihVVjð Þ�: (C3)

Using Eq. (C2) and expanding, we find

hŴ6i ¼ 7
p

2
cos /þ 1� p

2

	 1

2

� �
Tr jHHihHHj þ jVVihVVjð Þ


 ��

� jhHHjU6ij2 þ jhVVjU6ij2
� �o

¼ 7
p

2
cos /þ 1� p

2

1

2
þ 1

2

� �
� 1

2
þ 1

2

� �� �

¼ 7
p

2
cos /: (C4)

This is the prediction for hŴ6i that is used in Fig. 2.
Next we find the prediction for the CHSH parameter S,

assuming the system is in the state q̂1 of Eq. (20). First
define the state jhi, which is linearly polarized at an angle h
with respect to the horizontal as

jhi ¼ cos hjHi þ sin hjVi: (C5)

Next, we define the Hermitian polarization operator }̂h,
which corresponds to a measurement of this polarization.
States found to be polarized along h have eigenvalue þ1,
while states polarized along h? ¼ hþ p=2, which is perpen-
dicular to h, have eigenvalue �1. As such, we can write }̂h
as

}̂h ¼ jhihhj � jh?ihh?j: (C6)

Using this and Eq. (C5), it is possible to show that the matrix
elements of }̂h in the horizontal-vertical basis are

hHj}̂hjHi ¼ cos 2h; (C7)

hVj}̂hjVi ¼ �cos 2h; (C8)

and

hHj}̂hjVi ¼ hVj}̂hjHi ¼ sin 2h: (C9)

The joint polarization operator corresponding to Alice
measuring polarization hA and Bob measuring polarization
hB is }̂AB

hAhB
¼ }̂A

hA
}̂B

hB
, and the expectation value of a mea-

surement corresponding to }̂AB
hAhB

, assuming the system is in
the pure state jUð/Þi, is

Epure hA; hB;/ð Þ ¼ hU /ð Þj}̂AB
hAhB
jU /ð Þi ¼ 1

2
hHHj}̂A

hA
}̂B

hB
jHHi þ hVVj}̂A

hA
}̂B

hB
jVVi þ e�i/hVVj}̂A

hA
}̂B

hB
jHHi

h

þ ei/hHHj}̂A
hA
}̂B

hB
jVVi� ¼ cos 2hA cos 2hB þ sin 2hA sin 2hB cos / : (C10)

We note that this expectation value explicitly depends on the phase angle / in the state jUð/Þi.
Now assume we are in state q̂1 of Eq. (20), yielding

E hA; hB;/ð Þ ¼ Tr }̂A
hA
}̂B

hB
q̂1

h i
¼ pTr }̂A

hA
}̂B

hB
jU /ð ÞihU /ð Þj

h i
þ 1� p

2
Tr



}̂A

hA
}̂B

hB
jHHihHHj þ jVVihVVjð Þ

�

¼ pEpure hA; hB;/ð Þ þ 1� p

2
hHHj}̂A

hA
}̂B

hB
jHHi þ hVVj}̂A

hA
}̂B

hB
jVVi

� 
: (C11)
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Using the matrix elements of }̂h and Eq. (C10), we find

EðhA;hB;/Þ ¼ pðcos 2hA cos 2hB þ sin 2hA sin 2hB cos /Þ
þ ð1� pÞðcos 2hA cos 2hBÞ
¼ cos 2hA cos 2hB þ p sin 2hA sin 2hB cos / :

(C12)

The CHSH parameter, as a function of the phase /, is
then11,18

S /ð Þ ¼ E � p
4
;�p

8
;/

� �
� E � p

4
;
p
8
;/

� �

þ E 0;� p
8
;/

� �
þ E 0;

p
8
;/

� �
: (C13)

This is the prediction for S that is used in Fig. 2.
The expectation values of our witnesses, for the Werner

state in Eq. (22), are given by

hŴ6i ¼ Tr Ŵ
6
q̂W

� 

¼ pWTr Ŵ
6
q̂pure

� 
þ 1� pW

4
Tr Ŵ

6
� �

¼ pWhŴ
6ipure þ

1� pW

4

	 1

2
Tr 1̂ð Þ � Tr jU6ihU6j

� �
 �
: (C14)

Using Eq. (C2), Trð1̂Þ ¼ 4, and the fact that the trace of a
normalized state is 1 yields

hŴ6i ¼ 7
pW

2
cos /þ 1� pW

2
� 1� pW

4
: (C15)

Finally, we note that when we are performing the measure-
ments for the Werner state, we set / ¼ 0, so

hŴ6i ¼ 7
pW

2
þ 1� pW

4
: (C16)

The expectation value of }̂AB
hAhB

, assuming the system to be
in a Werner state with / ¼ 0, is

E hA; hBð Þ ¼ Tr }̂A
hA
}̂B

hB
q̂W

h i

¼ pWTr }̂A
hA
}̂B

hB
jU 0ð ÞihU 0ð Þj

h i

þ 1� pW

4
Tr }̂A

hA
}̂B

hB

h i

¼ pWEpure hA; hB; 0ð Þ þ 1� pW

4
Tr }̂A

hA
}̂B

hB

h i
:

(C17)

Computing the trace in the horizontal-vertical basis, and
using the matrix elements of }̂h, we find

E hA; hBð Þ ¼ pWEpure hA; hB; 0ð Þ þ 1� pW

4

	 hHHj}̂A
hA
}̂B

hB
jHHiþhHVj}̂A

hA
}̂B

hB
jHVi

h

þhVHj}̂A
hA
}̂B

hB
jVHi þ hVVj}̂A

hA
}̂B

hB
jVVi

i

¼ pWEpure hA; hB; 0ð Þ : (C18)

Since S is just a linear combination of expectation values, we
find that for a Werner state

SW ¼ pWSpure ¼ pW2
ffiffiffi
2
p

; (C19)

where we have used the value of S obtained when the system
is prepared in state jUð0Þi ¼ jUþi.

To obtain the fits to the data in Fig. 3, we first invert Eq.
(C16) to find pW in terms of hŴþi, so that we can determine
the value of pW for each of the experimental measurements
of hŴþi (i.e., as a function of the translation of the business
card). The pure state fraction pW should be proportional to
the area of the unblocked portion of the beams, and for
Gaussian beams this area should be an error function. We
thus fit pW to an error function, with the fit parameters being
the width of the beam, the location of the center of the beam,
and the maximum pure state fraction. This fit is then used to
determine the theoretical predictions for hŴ6i and S of Eqs.
(C16) and (C19) that are used in Fig. 3.
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