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Joint Quantum Measurement Using Unbalanced Array Detection
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We have measured the joint Q-function of a highly multimode field using unbalanced heterodyne
detection with a charge-coupled device array detector. We use spectral interferometry between a weak
signal field and a strong, 100 fs duration local oscillator pulse to reconstruct the joint quadrature ampli-
tude statistics of about 25 temporal modes. By adjusting the time delay between the signal and local
oscillator pulses we are able to shift all the classical noise to modes distinct from the signal. This
obviates the need to use a balanced detector.
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A complete description of the quantum state of a multi-
mode field requires simultaneous measurement of the joint
statistics of all the modes. Joint statistics yield information
about the correlations between modes that cannot be ob-
tained from single-mode measurements. In this Letter we
describe a new approach to measuring the joint statistics
of a highly multimode field using a single array detector
in an unbalanced configuration. Nonetheless, we are still
able to eliminate the classical noise of the local oscillator
(LO) by judicious placement of its modes with respect to
those of the signal field.

To date joint measurement of two-mode fields has
yielded determinations of the second-order coherence
g�2��t, t 1 t� [1], joint photon statistics [2], and the
joint polarization state of the two-photon subspace of
an entangled pair of photons [3]. The amount of data
required and the use of balanced detection with pairs of
photodiodes make it difficult to extend the techniques
used in these experiments to fields with many modes. No
measurements of the full joint quantum state of even a
two-mode system have been reported.

Measurements of more than two modes at once can be
made using array detection [4]. It has been demonstrated
that it is possible to obtain simultaneous (but not joint)
measurements of the Wigner functions of many modes by
using array detectors [5,6]. It has been shown theoreti-
cally that one may use array detectors to measure the joint
Q-function of a multimode field [7]. One of the difficul-
ties of these methods is the need to balance two array de-
tectors and perform pixel-by-pixel subtraction to eliminate
the classical intensity noise of the LO [8]. However, we
demonstrate here that it is possible to achieve the same
effect by using only a single array, without balancing, by
suitable arrangement of the LO and signal fields. Further-
more, we simultaneously measure many temporal modes
without having to scan the time delay or the phase of the
LO; this drastically reduces the amount of data that needs
to be acquired. This measurement technique could be used,
for example, to simultaneously determine two-time field
and intensity correlations of a signal field containing only
a few photons.
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The technique of Fourier transform spectral interferom-
etry allows us to achieve the shot-noise limit (SNL) in un-
balanced detection by encoding the relevant information
about the signal pulse using a carrier modulation in the
spectral domain [9,10]. By measuring the spectrum S̃�v�
of an electric field which is given by the sum of an LO
field ẼLO and a signal field ẼS , which is delayed from the
LO field by a time t, one obtains

S̃�v� � jẼLO�v� 1 ẼS�v� exp�ivt�j2

� jẼLO�v�j2 1 jẼS�v�j2

1 �Ẽ�
LO�v�ẼS �v� exp�ivt� 1 c.c.� . (1)

Fourier transforming this measurement into the temporal
domain yields

S�t� � F�S̃�v��

� E�
LO�2t� ≠ ELO�t� 1 E�

S�2t� ≠ ES�t�

1 f�t 2 t� 1 f��2t 2 t� , (2)

where f�t� � E�
LO�2t� ≠ ES�t�, and ≠ denotes a convo-

lution. The first term peaks at t � 0 and is the dominant
term. It contains the second-order classical LO noise that
would be removed if one were performing balanced de-
tection using two arrays. If t is large enough, f�t 2 t�,
which peaks near t � t and contains all the information
on the heterodyned signal pulse, is temporally separated
from the classical noise at t � 0. Thus, by temporally de-
laying the signal with respect to the LO and performing
unbalanced detection we can eliminate the classical noise
on the LO just as effectively as if we had performed bal-
anced detection, without the experimental complication of
accurately aligning the two arrays.

In our experiment the mode statistics are expressed in
terms of the joint Q-function of the modes. The Q func-
tion is a quantum mechanical, phase-space, quasiproba-
bility distribution; it is positive definite and may be used
to calculate quantum expectation values of antinormally
ordered operators [11,12]. In principle the Q function
contains all information about the quantum mechanical
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VOLUME 87, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 DECEMBER 2001
state of a system. However, to extract the density matrix
from the Q function it is necessary to perform a numerical
deconvolution, which is impractical with real experimental
data. A full quantum mechanical analysis is presented in
Ref. [7]. Here we present a somewhat different analysis of
this experiment, concentrating on the differences between
the proposed experiment of Ref. [7] and our actual imple-
mentation based on unbalanced homodyne detection using
a multimode LO pulse.

Following Ref. [7], we consider an optical spectrum
measured by an array detector, with n̂j � â

y
j âj being the

operator corresponding to the number of photons incident
on pixel j of the array. Each pixel measures a differ-
ent spectral mode and the mode frequencies are given by
vj � v 1 jdv, where v is the mean frequency of the
field, dv is the frequency separation of adjacent pixels,
and there are N pixels labeled by 2N�2 # j , N�2. We
can also express the measured field in terms of temporal
modes b̂k , 2N�2 # k , N�2 using the Fourier relation

âj �
1

p
N

X
k

exp�i2pjk�N �b̂k . (3)

In our experiment the signal and LO fields are separated
by a time delay. For the purposes of this analysis we thus
assume that the LO occupies the 2M 1 1 temporal modes
near the center of our time window. The signal occupies
the temporal modes after the LO, and the modes before the
LO are empty. In order to make this distinction between
these modes clearer, we rewrite the mode operators as

b̂k �

8>><
>>:

b̂
�vac�
k 2N�2 # k , 2M ,

b̂
�lo�
k 2M # k # M ,

b̂
�s�
k M , k , N�2 ,

(4)

where the superscripts refer to vacuum, LO, or signal mode
operators.

The operator that we measure corresponds to the Fourier
transform of n̂j ,

K̂p �
X
j

exp�2i2ppj�N �n̂j . (5)

Equations (3) and (4) can be combined to express the spec-
tral mode number operator n̂j in terms of temporal mode
operators b̂k . Terms of second order in operators corre-
sponding to the weak fields b̂

�s�
p and b̂

�vac�
p are discarded.

Substituting this expression for n̂j into Eq. (5) yields an
expression for K̂p in terms of the b̂k’s. Furthermore, the
modes of our LO pulse are in large amplitude coherent
states, so the dominant contributions are retained if we re-
place the LO mode operators b̂

�lo�
k by their corresponding

coherent state amplitudes bk. The terms that contribute
to the summations in the expression for K̂p depend on the
value of p; for p . 2M we find

K̂p �
MX

k�2M

�b�
k b̂

�s�
k1p 1 bkb̂

y�vac�
k2p � . (6)
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If the LO occupies only a single �k � 0� temporal mode,
then Eq. (6) simplifies to

K̂p � b�
0b̂�s�

p 1 b0b̂y�vac�
2p . (7)

In this case a measurement of K̂p returns a complex
number, which from Eq. (7) we can interpret as a measure-
ment of the signal mode annihilation operator b̂

�s�
p , plus an

added vacuum noise contribution. Since the annihilation
operator is the sum of the two field quadrature amplitudes

b̂
�s�
p � �1�21�2� �x̂p 1 iŷp�, the real and imaginary parts

of our measurement correspond to simultaneous measure-
ment of the quadrature amplitudes xp and yp. The price
we pay for simultaneous measurement of noncommuting
observables is the presence of the additional vacuum noise,
as was first pointed out by Arthurs and Kelly [12,13].

Each run of the apparatus returns a set of �N�2� 2 M
complex numbers, which correspond to the quadrature am-
plitudes of the signal modes �xp, yp�. By histogramming
our measured values of xp and yp we create a probabil-
ity distribution, which in the limit of a large number of
samples tends to the Q distribution for the field quadra-
tures Q�xp, yp� [11,12,14]. Indeed, since we simultane-
ously measure the quadrature amplitudes for all values of
p, we can create joint Q-distributions for multiple modes.
It is difficult to display these multivariable distributions
graphically, so here we display correlations between the
modes in terms of the joint distribution of the x quadra-
tures of the different modes. These distributions are given
by the marginals

Q0�xp , xp 0� �
ZZ

Q�xp , yp , xp 0 , yp 0� dyp dyp 0 . (8)

In our experiments, the LO pulse does not occupy a
single temporal mode, so our measurements are more accu-
rately described by Eq. (6) than they are by Eq. (7). Thus,
the quadrature amplitudes for the measured mode do not
represent those of a specific temporal mode but correspond
to a linear combination of modes. As seen from Eq. (6),
the mode we actually measure represents a convolution
between the LO and signal modes. Despite this fact, it
is straightforward to demonstrate that �K̂p, K̂p 0� � 0 for
p, p0 . 2M, so the modes we measure are independent.
It is possible to deconvolve the known LO field from the
data to obtain higher temporal resolution, provided the LO
spectrum is broader than that of the signal.

The experimental apparatus is shown in Fig. 1. Well
characterized 100 fs duration pulses from a mode-locked
Ti:sapphire laser are frequency doubled to a wavelength of
400 nm [15]. The pulses pass through a 25 mm path length
of lithium triborate (LBO) and a polarizer. The input po-
larization to the LBO is approximately 5± off of perfect
alignment with one of the eigenpolarizations of the crys-
tal. Since the two eigenpolarizations have different group
velocities, the input pulse splits into two orthogonally po-
larized pulses that travel at different speeds. On output a
second polarizer projects these two pulses onto the same
253601-2
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FIG. 1. The experimental apparatus. Here, “pol.” stands for
polarizer, 2x stands for frequency doubling crystal, and “spec.”
stands for spectrometer.

polarization axis. The polarizer angle can be varied in or-
der to adjust the relative intensity of the two pulses, pro-
ducing a weak signal pulse and a strong LO pulse that are
separated in time by approximately 3 ps. This method of
generating two pulses yields a very stable phase relation-
ship between them. After the polarizer, we focus the beam
onto the entrance slit of a 0.30 m spectrometer, and we
detect the spectrum with a charge-coupled-device (CCD)
array.

The CCD is a 512 3 512 array of pixels. We use an
exposure time of 300 ms, so each “shot” is actually com-
posed of millions of pulses, since our laser has a repetition
rate of 82 MHz. The spectrum is focused onto approxi-
mately 15 rows, so we collect data from these rows, and
sum along each vertical column to obtain a 512 point spec-
trum. The wavelength increment between adjacent pixels
is 0.035 nm, and our resolution is about twice this. When
we Fourier transform our spectra to obtain Kp the index
p corresponds to a time index, where t � p�29.8 fs�. Be-
fore we acquire data with a signal present we perform two
background measurements. We first block all light imping-
ing on the array to obtain a background dark level that we
subtract. We then block the signal field and allow only the
LO to pass; this creates a signal field in the vacuum. We
acquire 100 shots with a vacuum signal and average these,
which yields 	Kp
vac, where the subscript indicates that the
signal field is in the vacuum.

We acquire 5000–15 000 spectra with the signal present
and Fourier transform them, on each shot obtaining values
for Kp . From this we subtract the vacuum signal level to
obtain Kp 2 	Kp
vac. We scale our measurements by the
total number of detected photoelectrons nt . After scaling
we obtain the quadrature amplitudes

xp �

p
2

nt
Re�Kp 2 	Kp
vac�,

yp �

p
2

nt
Im�Kp 2 	Kp
vac� ,

(9)

which we histogram into a 32 3 32 array of bins to ob-
tain the Q function. Furthermore, since the Q function
allows the determination of antinormally ordered opera-
tors, we can directly calculate the mean 	n̂�s�

p 
 and standard

deviation 	�Dn̂
�s�
p �2
1�2 of the number of photons in the pth

signal mode by placing the appropriate operator in antinor-
mal order.

In Fig. 2(a) we show the measured Q function of
one mode of the signal field. This mode has a mean of
253601-3
FIG. 2. The measured Q functions of a temporal mode for
(a) a signal pulse with a stable phase and (b) a chirped signal
pulse with a random phase.

6.5 photons, and the fluctuations on the photon number
are shot-noise limited with a standard deviation of 2.5.
We have obtained SNL operation despite the fact that our
LO beam has classical energy fluctuations and we have
not used balanced detection. For this particular data set
we acquired 5000 shots of data, and the standard deviation
of the LO fluctuations was 2.6% of the mean, while the
peak-to-peak fluctuation was over 15%.

When using the experimental arrangement in Fig. 1, the
signal and LO pulses have the same duration, so we do not
have very good time resolution of the signal pulse. Also,
since the signal pulse is in a coherent state the measured
Q functions and two-mode correlations are all Gaussian
functions, which does not fully illustrate the power of our
measurement technique to measure arbitrary states. To rec-
tify this we have replaced the LBO and polarizers by a
Michelson interferometer. The two arms of the interfer-
ometer form the signal and local oscillator beams, and we
make the length of the signal arm longer in order to delay
the signal pulse by �3.5 ps. The signal arm also contains
1.5 cm of glass that adds dispersion to the signal pulse;
the signal pulse is thus stretched and chirped. The path
length difference between the two arms is not stabilized;
this randomizes the signal phase producing non-Gaussian
Q functions.

Figure 2(b) shows the measured Q function for a mode
in the trailing edge of the pulse. The Q function is circular;

FIG. 3. The mean photon number 	n
 (solid curve) and phase
	f
 (dashed curve) of a chirped signal pulse as a function of
delay time after the local oscillator pulse.
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FIG. 4. The measured joint distributions Q0�xp , xp0 � for two
different pairs of temporal modes of a chirped signal pulse. The
mode delay times in (a) are t � 3.457 ps and t0 � 3.576 ps,
while in (b) they are t � 3.457 ps and t0 � 3.785 ps

however, there is still a peak in the distribution indicating
that the phase has not been completely randomized. The
interferometer phase drifted considerably at the beginning
of the 8 h experiment but gradually stabilized toward the
end of this 14 000 shot data run —if we analyze only the
first 10 000 data points we obtain a Q function that is
more nearly circular, while the last 4000 points yield a
“banana-shaped” Q function. The number of photons in
the mode corresponding to Fig. 2(b) is 5.9 6 2.6, which
is within 10% of the SNL. In Fig. 3 we show the mean
photon number 	n
 and phase 	f
 � 	tan21�� yp���xp �� 2

tan21�� yp 0���xp 0��
 (where p 0 corresponds to a mode near
the peak of the pulse) of our measured signal as functions
of time. This shows that dispersion generates a phase
across the pulse that is quadratic in time.

Figure 4 shows correlations between the x quadratures
of two modes in terms of joint distributions Q0�xp , xp 0�.
Figure 4(a) shows correlations between two modes that
are both near the peak of the pulse and consequently have
nearly the same amplitude and phase. This joint distri-
bution lies mainly along a line whose slope is 1, indicat-
ing strong positive correlations between the x quadratures.
This is what we would expect for two modes whose phases
are nearly the same. Because the relative phase of the two
modes is nearly constant but the absolute phase of each
is largely random, we observe a pattern that is essentially
a Lissajous figure representing the relative amplitude and
phase of the two modes. In Fig. 4(b) we show correlations
between a mode near the center of the pulse and another
in the trailing edge. The average phase difference between
these modes is nearly p�2, and this produces a joint dis-
tribution that is very different. While the joint distribution
appears circular in Fig. 4(b), we note that the scales along
the xp and x0

p axes are quite different, so this distribu-
tion is actually elliptical. Again, such a joint distribution
(Lissajous figure) is expected for two modes with random
phases, but whose average phase difference is p�2.
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We have demonstrated a new technique for performing
joint quantum measurements of multitemporal mode opti-
cal fields, which results in the determination of the joint
Q-function of the modes. This technique is based on un-
balanced heterodyne detection with array detectors. The
measurements are performed at the shot-noise limit, can
detect modes containing only a few photons, and have high
temporal resolution. We have shown that by using array
detection we are able to effectively eliminate the classi-
cal noise on the local oscillator field without the need to
perform balanced detection, which is a considerable ex-
perimental simplification.
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