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Mode optimization for quantum-state tomography with array detectors
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We demonstrate that it is possible to choose an optimal signal mode for state reconstruction when perform-
ing quantum-state tomography with array detectors. The mode optimization is done during the data analysis
(i.e., after all the data have been colleciedle develop theoretically a procedure for finding the mode that
satisfies a criterion which is quadratic in field operators; as examples we explicitly show how to maximize the
average photon number, or the amount of quadrature squeezing. We experimentally demonstrate the technique
by finding the mode which maximizes the average photon number for coherent-state signal beams occupying
both linear and sinusoidal modes.
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I. INTRODUCTION mode is an extremely difficult task experimentally, and it
becomes even more difficult if the experimenter is not com-
Quantum-state tomographQST) describes the process Pletely sure about what mode shape needs to be created.

of performing a large ensemble of measurements on a quan- Because array detection affords the opportunity to mea-
tum system, and then analyzing the measured data in suchS4"® essentially any mode, a questlon_that naturglly arises is:
way as to determine the full-quantum-mechanical state of th§2" On€ choose this mode in an intelligent fashion? That is,
system. The ideas behind QST are sufficiently general th an one somehow find a particular mode in a signal field that
they apply, in somewhat different forms, to different types of '35 sorr:].ehdes%ed prop(_arty?h F(|)r example, couldhone deter-
optical system§1—7], molecular vibration$g], trapped ions Min€ which mode contains the largest average photon num-
[9], and atomic beamElQ]. Extensions of QST have been ber, or the largest amount of quadratgre squegzmg? Then,
made to include multiple-mode systefid—15. Recently it ~°"C€ the corresponding mode function is known its quantum

has been shown that the use of array detectors can signi _t_ate could easily be determined. Throug_hout this paper, we
cantly improve the optical version of Q§T6—18 will refer to the mode whose state best fits some criteria as

To date experiments have demonstrated two types of imt—.he “optimal” mode. We will further refer to the process of

provements afforded by array detectors. The first is that arrag}nd'ng this r_node as mode optimization. . .
detectors can increase the effective detection efficiency over . It IS certa}lnly possible _to imagine performing mode opti-
standard detectors when using balanced homodyne detectidfy!Zation using data acquired with an array detector. If by no
This increase is due to the fact that the local oscill@tdd) of[her means, one could use a brute-forc_e optimization tech-
and signal fields need not be mode-matched when using afidue: choose a mode function, determine the state of that
ray detectors. In Ref17] array detection was found to be mode, see how well that state fits your definition of optimal,

over 40 times more efficient than standard detection for meac_:hoose another mode function and repeat. There is certainly

surements of a particular field mode. The second improvell© guarantee that such a brute-force approach would yield

ment is that arrays allow the experimenter to simultaneousl)trhe globally optimal SOIU_“O”’ 3”0' it would be a tedious pro-

determine the state of many different field modes. This“€SS: hovyever, afte.r doing this you would a!most certallnly
comes about because the measured mode is not determin%ﬁl(d up W'thba solution that Was be;ter than Ilf yog h?d Just
during the data acquisition, but is instead chosen during thi? er;dygur est guess as to what the optimal mode function
numerical postprocessing. Thus, one can choose to determiﬁgou €. .

the state of any mode during the analysssibject to the Here, we demonstrate that it is not necessary to resort to
constraint that the mode function must be yéab,17] such a crude, brute-force optimization technique, at least

In a practical situation, the shape of the signal mode tha‘f"her! the quantity of ‘“te“?St is quadratic in the_ quadrature
exhibits some property of interest, such as quadraturé‘m.p"tUde.Opera}tors' Specifically, we shall consider two cr-
squeezing, is not known exactly before the measurement. [fgH&: maximization of the average photon number, and mini-

a standard homodyne setup with point detectors the mod ization Of_ the quadrat_ure_variance. We wil describe the
containing the desired feature of the output is selected b{'€Cry behind the optimization process, and provide the re-

careful control of the spatiotemporal shape of the LO field;SUltS Of experiments that maximize the average detected pho-

the measured signal mode is essentially the projection of thi®n number for signal fields in weak coherent states.

signal onto the LO mode. Creating an LO in an arbitrary Il THEORY

For simplicity we will discuss here the one-dimensional
*FAX: 509-527-5904; Email address: beckmk@whitman.edu  case, which is the case in our experiments. Generalization to
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two-dimensional mode functions is straightforward. Let usnote by u, the eigenvalues oM, arranged in descending
assume that the mode of interest is described by a real valugglder, and by, the corresponding eigenvectors, assumed to
spatial functionuy(x). A priori the form of this function is  pe normalized according to E¢f). As the correlation matrix

not known, and it should be derived from the optimizationy is real and symmetric, these eigenvectors are mutually
criterion. Following Ref[16], the quadrature amplitude op- orthogonal. Any vectou satisfying Eq.(6) can be repre-

erator for this mode is given by sented as a linear combinatiar =,c,vy of the eigenvectors
with certain real coefficients, whose squares sum Eokcﬁ

1/2
qmq}:l(&) Z AqusUm(Xj), ) =1. Then the value of the quadratic form has the upper
B\ 2] 7 bound given by
where¢ and g are, respectively, the phase and the amplitude 1 1

of the LO used for homodyning; the LO is assumed to be in =~ u™-M-u=2, w2V} -vy<pu >, oo =—pq. (7)
a plane-wave mode. In E€l), D, is the spatial extent of the K ko Tox 6
detector array, anaﬁNj(,, is the operator of the difference
photocounts measured at thih pixel for the local oscillator
phaseg.

As the first optimization criterion, we shall consider maxi-
mization of the average number of photons. The photo
number operaton, for the modem s given by the standard

The above inequality becomes an equality if the vecotds

an eigenvector oM corresponding to its largest eigenvalue.
This eigenvectoru corresponding to the largest eigen-

value defines the shape of the optimal medg(x;). Since

"the correlation matrixM is real and symmetric, the eigen-

value problem can be solved using one of the standard nu-

formula merical algorithms for this class of matricgl9]. If the num-
1 [on 1 ber of pixels is excessively large, one can alternatively use
ﬁm=ﬂ f d¢qfw— 7 (2 methods designed specifically to find only the extreme eigen-
0

values[20]. In principle, the maximum eigenvalue of the
correlation matrix can be degenerate, corresponding to more
than one eigenvector. In practice, however, if the spatial
structure of signal field is not overly complicated the matrix

M can be reasonably expected to possess a nondegenerate

Using Eq.(1), we can express this operator in terms of the
difference photocountd de) as

D 2w R " 1 A i
A= s >, J dpAN; AN Um(X)Un(Xj1) = 5 - largest eigenvalue clearly separated from all the other eigen-
4mpei7 Jo 2 values.
(€©)) Once the optimal mode has been determined as described

above, it can then be substituted foy(x;) in Eq. (1), and
Sthe quadrature amplitudes corresponding to this mode can be
computed. These amplitudes can then be used to determine
D 1 the quantum state of the field using any of a number of
(Apy= _quT. M-u——, (4) different algorithms(see Refs[3], [4] for some examplgs
2p 2 In our case, we determine the density matrix of the mode in

where we have introduced vector notation. In this notakibn the Fock state basis.

is the correlation matrix for the difference photocounts, av- uaAr?titano?‘I?ngtglrjesstdilsszuiselg;incagf Ehee C?ngc?ritl?ruet nvg?seenvg;ﬁ
eraged over the phase of the local oscillator: q Y q 9 q

anceAqﬁw,. In this case, a calculation analogous to the pre-
1 (2« . . vious one shows that the variance of the quadrature ampli-
ijFzJ’o dp(AN;4AN;/4) (5  tude gy, detected for the LO phasg can be written in
vector form as

Evaluating the expectation value of both sides of this expre
sion yields

andu=up(x;) is a vector composed from the values of the D
mode function taken at the pixels of the array detector. Nor- Ad2 . =(82 N —{(f. V2=—>uT.S,.u 8
malization of the mode function implies a constraint on the A = (Amg) ~ (Gmay 2p° o ®
length of the vectou in the form
whereS, is the covariance matrix of difference photocounts
1 for the local oscillator phasé, defined as
uT~u=; uﬁq(xj)=&, (6)
where 6x is the width of an individual pixe[16].

As the second term on the right-hand side of E4).is  The optimization problem is similar to the previous one, ex-
constant, the problem of selecting the optimal mode reducesept that now we need to find the eigenvector corresponding
to maximizing the quadratic form defined by the correlationto the minimum eigenvalue of the mati$ . In addition, the
matrix M. This task is in turn equivalent to finding the ei- eigenvalue problem has to be solved separately for each of
genvector ofM corresponding to its maximum eigenvalue, the phasesp used in the experiment in order to find the
which can be seen from the following reasoning. Let us desetting of the LO phase that yields the strongest squeezing.
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PBS are focused perpendicular to the plane of Fig. 1 with a
cylindrical lens, and are detected on spatially separate re-
gions of a CCD array.

The CCD is a 108 1340 array of 26 20 wm? pixels. It
has a quantum efficiency a¢90% at 532 nm and is cooled
to —110 °C yielding a negligible dark-count rate of less than
1 electron per pixel per hour. The read out rate for each
exposure is=15 Hz.

Registering the pixels on the two outputs to ensure proper
subtraction is extremely important in these experiments. If
the pixels are not properly registered, we are unable to
B achieve shot-noise limited detection. Pixel registration is ac-

Neylindrical complished with the signal beam blocked, so that the signal
PBS lens is in a vacuum state. The procedure is a combination of
finely adjusting the optical alignment and numerically adjust-

I variable
waveplate
|

FIQ. 1 The experimental appa_ra_ttus: ND star)ds for neutrahIng the center pixels of the two images.
density filter, PBS stands for polarizing beam splitter, and AOM Finally. in order to eliminate offsets in our quadrature
stands for acousto-optic modulator. In the near common-path inter- Y, q

ferometer the polarizations and directions of the beams are indimeasuremems’ we measure the average vacuum difference

cated. The AOM, shutter, variable wave plate and CCD array are afpvel by b'°°k”_19 the signal beam after measurement of each
under computer control. LO phase. This vacuum level is subtracted from the mea-

sured difference number to yield the corrected difference

We note that we are able to resort to standard numericdlUMPerAN; —(AN;),qc. We actually use the corrected dif-
methods for solving symmetric eigenvalue problems becaus&"€nce number in place &N in Eq. (1) when we calculate
the quantity used as the optimization criterion is quadratic if"€ quadrature amplitudes. Further details of how we detect
the quadrature amplitude operators. In a general case tHB€ Peams, register the pixels on the two outputs, determine
optimization criterion can be a highly nonlinear function, e LO amplitudeg, and subtract the vacuum signal level

which makes the optimization problem significantly morecan be found in Ref.17].
complicated.
IV. EXPERIMENTAL RESULTS

IIl. EXPERIMENTAL SETUP The first signal mode we examined was one whose elec-

The experimental arrangement is nearly the same as thific field v_aried Iinea_rly across the surface of t_he detecto_r.
used in Ref[17], and a schematic is shown in Fig. 1. We useMathematically, the field m.ode we were attempting to dupli-
a frequency doubled Nd:YV(Qlaser, which produces a C&!€ was one whose functional form was
continuous-wave output at 532 nm, as our light source. An
acousto-optic modulator acts as a shutter to produce 10-ms- Ur (x)=(
long light pulses synchronized with the exposure time of the fin
charge-coupled devicéCCD) array. A polarizer-analyzer
pair adjusts the light intensity, and a single-mode optical fi-Experimentally, we do this by inserting a microscope cover
ber spatially filters the beam. slip halfway into the signal beam. The tilt angle of the cover

A N2 plate allows us to adjust the splitting ratio on aslip is adjusted to provide & (or an odd multiple ofm)
polarizing beam splittetPBS that constitutes the entrance phase shift between the two halves of the beam. Near its
to a near common-path interferometer. The signal beam exitsenter, the far-field diffraction pattern of a beam modified in
the beam splitter vertically polarized and travels counterthis way is that of a linear electric field.
clockwise around the ring, while the LO is horizontally po-  In Fig. 2@, we show the corrected difference number as
larized and travels clockwise. The relative phase of the twa function of pixel number across the array. This is for a
beams is adjusted with a liquid crystal variable wave platesingle exposure of the array, and thus contains all of the
whose axes are aligned so that it provides a®+&d phase quantum noise associated with detecting a very weak signal
shift to the LO, but does not affect the signal beam. beam. We collect 36 200 shots of such d&@0 shots/phase

We modify the spatial structure of the signal beam with aangle, 181 phase angles varying between 0 arjd @mpute
mode shaper, as discussed further below. The signal and titlee correlation matrifEq. (5)], diagonalize the matrix and
LO return to the PBS and emerge from the interferometedetermine the eigenmode corresponding to the largest eigen-
spatially overlapped, but with orthogonal polarizations. Aftervalue. This is the mode,,(x) that maximizes the average
leaving the interferometer the beams pass through anoth@hoton number, and it is also plotted in FigaR This mode
combination of a\/2 plate and a PBS. The/2 plate rotates is found to have an average photon number of 2.3, and has a
the polarizations of the signal and the LO beams, so that thegearly linear variation with position, as expected.
are at 45° with respect to the axes of the PBS, so the PBS Now that we have determined the optimal mode function
acts as a 50:50 beam splitter on which the signal and local,,(x), we substitute it for the measured mode function
oscillator beams interfere. The beams emerging from thei(x) in Eq. (1) to determine the quadrature amplitudes of

1/2
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FIG. 4. In (a), we show the corrected difference number as a
FIG. 2. In (a), we show the corrected difference number as afunction of pixel number against the right axis for a signal mode
function of pixel number against the right axis for a signal modethat varies sinusoidally across the detector. Plotted against the left
that varies linearly across the detector. Plotted against the left axis igxis is the mode that maximizes the average photon numbés),In
the mode that maximizes the average photon numbefbllnwe e compare the optimal mode to anposteriori sinusoidal mode
compare the optimal mode to arpriori “best guess” linear mode.  having the same period and phase as the optimal mode.

our individual exposures. These quadrature amplitudes argbly good in this case. Finally, we can compute what we
then used to find the quantum state of this mode using QSTvould have got if we had used point detectors instead of
We determine the state in terms of its density-matrix reprearray detectors. We do this by finding the state corresponding
sentation in the Fock state basis. In Fig. 3, we plot the exto a mode that is constant across the face of the detector. We
perimentally determined photon number distributiBiin)  find this mode to have an average of 0.4 photons, so we get
for this optimal mode. Also shown in Fig. 3 is the distribu- about a five-fold increase in detection efficiency when using
tion for a theoretical coherent state with the same averagerray detectors to detect this particular signal mode with a
photon number. We see that our state is reasonably well dgjane-wave LO.
scribed by a coherent state. We have also examined a signal mode that has a sinu-
In Fig. 2(b), we show a comparison between the optimalsoidal variation of electric field across the array. We create
mode and a purely linear modEq. (10)]. This linear mode this field by using a double slit as our mode shaper, which
represents arma priori “best guess” as to what mode we produces a sinusoidal field in the far field. Figuf@)4gshows
would expect to see in this experiment. We can calculate théhe corrected difference number taken from a single exposure
state of this linear mode, and also determine its average phof the array, as well as the optimal mode computed from
ton number, and we find that it has an average of 2.2 pho36 200 exposures. The single exposure data here looks less
tons. This means that our optimal mode has a slightly highenoisy than in Fig. 249), but the main reason for this is that the
average photon number, but our best guess was still reasosignal level is higher in this case. We find the optimal mode
here to have an average of 4.8 photons.
T J T T Before computing the state of this signal mode, we make
r|* one more correction to our data that we did not need to make
02} T - to the linear mode data. Because the slits block a large frac-
tion of the signal beam in the interferometer, we must have
substantially more light present in the signal arm of the in-
01R= I - terferometer. We find that this light creates a background on
I our array that must be accounted for. Subtraction of the
L vacuum signal as described above eliminates imbalance in
0.0 | I | the LO, but since the signal is blocked in order to do this
0 2 4 6 correction it cannot eliminate background associated with the
n signal beam. We eliminate this background on the signal by

FIG. 3. Photon number distribution of the measured state corre0ting that becausg, . .= —dm, the phase average of the
sponding to the optimal mode when the signal varies linearly acros§uadrature amplitudes must be zero:
the array. The points represent measured values, while the bars om
correspond to a theoretical coherent state having the same mean d(Bmg)=0. (1)
number of photons. The average photon number is 2.3.

P(n)
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02T T I I T ] ture squeezing. We have experimentally demonstrated the
technique for maximizing the average photon number.

In addition to the obvious benefits, mode optimization
offers other important information to the experimenter as
well. For instance, in the experiments with a double slit in
our signal beam we expected to see sinusoidal fringes
emerge as being the optimal mode. In runs where this was
not the case, it indicated to us that there was likely an align-
F L 1 1 L L ment error somewhere in our system. Thus, finding the opti-
0 2 4 6 8 10 mal mode provided information that helped us to improve

n the alignment of our system; something thapriori knowl-

FIG. 5. Photon number distribution of the measured state corref-adge of what the mode should look like could never do by

sponding to the optimal mode when the signal varies sinusoidally}tself' . . .
across the array. The points represent measured values, while the IN Some cases finding the optimum mode might be even

bars correspond to a theoretical coherent state having the sanfgore interesting than finding the quantum state. For ex-
mean number of photons. The average photon number is 4.8. ample, consider the case of the squeezed mode generated in

a traveling wave optical parametric amplifier pumped with a

Any difference from zero is attributable to background in ourGaussian beam. Of course, one wishes to find the maximal
signal beam, so we subtract off this difference from theSdU€€zing, but it is espeplallylnterestlng to examine what the
quadrature amplitudes before computing the quantum statef*@ct shape of this maximally squeezed mode is. There are a
The photon number distribution for this mode is shown inf€W references that discuss theoretically this probleh-
Fig. 5, and once again we find that our state is reasonabl§3]- There have also been experiments that generate an LO
well described by a coherent state. It is interesting to notd"0de that better matches this squeezed mode, and hence
that Fig. 5 indicates there is a very small probability that thisOPServe larger amounts of squeeziiggl]. However, there
state contains more than 10 photons. Using the generous d42S Peen no experimental effort to date on explicitly search-
sumption of 10 photons and looking back at Figg)shows N9 out the modg that truly maximizes the amount of squeez-
that on this single shot there is less than 1/2 a signal photoff?d- Such experiments are possible using array detectors.
per pixel (there are thousands of LO photons per pixgét Experiments detecting nonclassical light with arrays
we still see a strong interference pattern. So, thinking inwould be difficult, but we believe that they should not be any

terms of photons makes the single-shot data of Fig) 4 More difficult than similar experiments with point detectors.
seem surprising indeed. One big challenge is in registering pixels on the two images.
In Fig. 4(b), we show a comparison between the optimaIAS described above, registration is done with a vacuum sig-
mode and a pure sinusoidal mode. In this case, the sinusoiddf! Peanthe average difference numbers and the noise level
mode was not chosen usiagpriori knowledge of the mode, of the difference numbers are quite sensitive to pixel regis-
but was instead chosenposteriorigiven the optimal mode; tration) so registration should be no more difficult with non-
it is the sinusoidal mode that has the same period and pha&issical signal beams than it is with classical beams. Also,
as the optimal mode. This mode is found to have a mean df'€ Phase fronts and timing of the signal and the LO beams
4.6 photons. This is fairly close to the optimal value, and thighust be matched, but this is also the case in experiments
is not surprising because the modes are seen to be nearly tfY0IVing point detectors, and experimenters have developed
same in Fig. ). ingenious schemes for doing thisee, for example, Ref.
By looking solely at the measured difference numbers i 22} Indeed, this alignment may be easier to do with array
Fig. 4(a), one might at first glance think that the optimal détectors because the experimenter will likely haeene
mode would have a slightly smaller period than the ongdea of what the optimal mode shape will beg., it il
found from the algorithm. However, by using a sinusoidallikely be shaped like a *bump” as opposed to having fringes
mode that, by eye, appears to fit this corrected differenc&Cross il and this can be used to improve the alignment of
data better, we obtain a measured average photon number € Phase fronts. _ .
only 3.6 photons. In this case, the algorithm works signifi- 'deally one would like to have a means of using unbal-
cantly better than the eye. We also find that single area?”ced array detection in order to eI|m!nate the need to reg-
integrating detectors would measure a state with an averadel®’ Pixels. Unbalanced array detection has been used in

of only 0.13 photons, so once again we find that arrays offefn€asurements of th@ function[18], but so far has not been
a dramatic improvement over single detectors. demonstrated for Wigner function or density-matrix mea-

surements. We are currently exploring possibilities for unbal-
anced measurements of the density matrix.

P(n)
=]
T

0.0

V. CONCLUSIONS
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