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Mode optimization for quantum-state tomography with array detectors

A. M. Dawes and M. Beck*
Department of Physics, Whitman College, Walla Walla, Washington 99362

K. Banaszek
University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
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We demonstrate that it is possible to choose an optimal signal mode for state reconstruction when perform-
ing quantum-state tomography with array detectors. The mode optimization is done during the data analysis
~i.e., after all the data have been collected.! We develop theoretically a procedure for finding the mode that
satisfies a criterion which is quadratic in field operators; as examples we explicitly show how to maximize the
average photon number, or the amount of quadrature squeezing. We experimentally demonstrate the technique
by finding the mode which maximizes the average photon number for coherent-state signal beams occupying
both linear and sinusoidal modes.
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I. INTRODUCTION

Quantum-state tomography~QST! describes the proces
of performing a large ensemble of measurements on a q
tum system, and then analyzing the measured data in su
way as to determine the full-quantum-mechanical state of
system. The ideas behind QST are sufficiently general
they apply, in somewhat different forms, to different types
optical systems@1–7#, molecular vibrations@8#, trapped ions
@9#, and atomic beams@10#. Extensions of QST have bee
made to include multiple-mode systems@11–15#. Recently it
has been shown that the use of array detectors can sig
cantly improve the optical version of QST@16–18#.

To date experiments have demonstrated two types of
provements afforded by array detectors. The first is that a
detectors can increase the effective detection efficiency o
standard detectors when using balanced homodyne detec
This increase is due to the fact that the local oscillator~LO!
and signal fields need not be mode-matched when using
ray detectors. In Ref.@17# array detection was found to b
over 40 times more efficient than standard detection for m
surements of a particular field mode. The second impro
ment is that arrays allow the experimenter to simultaneou
determine the state of many different field modes. T
comes about because the measured mode is not determ
during the data acquisition, but is instead chosen during
numerical postprocessing. Thus, one can choose to deter
the state of any mode during the analysis~subject to the
constraint that the mode function must be real! @16,17#.

In a practical situation, the shape of the signal mode t
exhibits some property of interest, such as quadra
squeezing, is not known exactly before the measuremen
a standard homodyne setup with point detectors the m
containing the desired feature of the output is selected
careful control of the spatiotemporal shape of the LO fie
the measured signal mode is essentially the projection of
signal onto the LO mode. Creating an LO in an arbitra
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mode is an extremely difficult task experimentally, and
becomes even more difficult if the experimenter is not co
pletely sure about what mode shape needs to be created

Because array detection affords the opportunity to m
sure essentially any mode, a question that naturally arise
can one choose this mode in an intelligent fashion? Tha
can one somehow find a particular mode in a signal field t
has some desired property? For example, could one d
mine which mode contains the largest average photon n
ber, or the largest amount of quadrature squeezing? T
once the corresponding mode function is known its quant
state could easily be determined. Throughout this paper,
will refer to the mode whose state best fits some criteria
the ‘‘optimal’’ mode. We will further refer to the process o
finding this mode as mode optimization.

It is certainly possible to imagine performing mode op
mization using data acquired with an array detector. If by
other means, one could use a brute-force optimization te
nique: choose a mode function, determine the state of
mode, see how well that state fits your definition of optim
choose another mode function and repeat. There is certa
no guarantee that such a brute-force approach would y
the globally optimal solution, and it would be a tedious pr
cess; however, after doing this you would almost certai
end up with a solution that was better than if you had j
taken your best guess as to what the optimal mode func
should be.

Here, we demonstrate that it is not necessary to reso
such a crude, brute-force optimization technique, at le
when the quantity of interest is quadratic in the quadrat
amplitude operators. Specifically, we shall consider two c
teria: maximization of the average photon number, and m
mization of the quadrature variance. We will describe t
theory behind the optimization process, and provide the
sults of experiments that maximize the average detected
ton number for signal fields in weak coherent states.

II. THEORY

For simplicity we will discuss here the one-dimension
case, which is the case in our experiments. Generalizatio
©2003 The American Physical Society02-1
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two-dimensional mode functions is straightforward. Let
assume that the mode of interest is described by a real va
spatial functionum(x). A priori the form of this function is
not known, and it should be derived from the optimizati
criterion. Following Ref.@16#, the quadrature amplitude op
erator for this mode is given by

q̂mf5
1

b S Dx

2 D 1/2

(
j

DN̂j fum~xj !, ~1!

wheref andb are, respectively, the phase and the amplitu
of the LO used for homodyning; the LO is assumed to be
a plane-wave mode. In Eq.~1!, Dx is the spatial extent of the
detector array, andDN̂j f is the operator of the differenc
photocounts measured at thej th pixel for the local oscillator
phasef.

As the first optimization criterion, we shall consider max
mization of the average number of photons. The pho
number operatorn̂m for the modem is given by the standard
formula

n̂m5
1

2p E
0

2p

dfq̂mf
2 2

1

2
. ~2!

Using Eq.~1!, we can express this operator in terms of t
difference photocountsDN̂j f as

n̂m5
Dx

4pb2 (
j j 8

E
0

2p

dfDN̂j fDN̂j 8fum~xj !um~xj 8!2
1

2
.

~3!

Evaluating the expectation value of both sides of this exp
sion yields

^n̂m&5
Dx

2b2 uT
•M•u2

1

2
, ~4!

where we have introduced vector notation. In this notationM
is the correlation matrix for the difference photocounts, a
eraged over the phase of the local oscillator:

M j j 85
1

2p E
0

2p

df^DN̂j fDN̂j 8f& ~5!

andu5um(xj ) is a vector composed from the values of t
mode function taken at the pixels of the array detector. N
malization of the mode function implies a constraint on t
length of the vectoru in the form

uT
•u5(

j
um

2 ~xj !5
1

dx
, ~6!

wheredx is the width of an individual pixel@16#.
As the second term on the right-hand side of Eq.~4! is

constant, the problem of selecting the optimal mode redu
to maximizing the quadratic form defined by the correlati
matrix M . This task is in turn equivalent to finding the e
genvector ofM corresponding to its maximum eigenvalu
which can be seen from the following reasoning. Let us
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note by mk the eigenvalues ofM , arranged in descendin
order, and byvk the corresponding eigenvectors, assumed
be normalized according to Eq.~6!. As the correlation matrix
M is real and symmetric, these eigenvectors are mutu
orthogonal. Any vectoru satisfying Eq.~6! can be repre-
sented as a linear combinationu5(kckvk of the eigenvectors
with certain real coefficientsck whose squares sum to(kck

2

51. Then the value of the quadratic form has the up
bound given by

uT
•M•u5(

k
mkck

2vk
T
•vk<m1(

k
ck

2 1

dx
5

1

dx
m1 . ~7!

The above inequality becomes an equality if the vectoru is
an eigenvector ofM corresponding to its largest eigenvalu

This eigenvectoru corresponding to the largest eige
value defines the shape of the optimal modeuopt(xj ). Since
the correlation matrixM is real and symmetric, the eigen
value problem can be solved using one of the standard
merical algorithms for this class of matrices@19#. If the num-
ber of pixels is excessively large, one can alternatively
methods designed specifically to find only the extreme eig
values @20#. In principle, the maximum eigenvalue of th
correlation matrix can be degenerate, corresponding to m
than one eigenvector. In practice, however, if the spa
structure of signal field is not overly complicated the mat
M can be reasonably expected to possess a nondegen
largest eigenvalue clearly separated from all the other eig
values.

Once the optimal mode has been determined as descr
above, it can then be substituted forum(xj ) in Eq. ~1!, and
the quadrature amplitudes corresponding to this mode ca
computed. These amplitudes can then be used to deter
the quantum state of the field using any of a number
different algorithms~see Refs.@3#, @4# for some examples!.
In our case, we determine the density matrix of the mode
the Fock state basis.

An analogous discussion can be carried out when
quantity of interest is squeezing of the quadrature noise v
anceDqmf

2 . In this case, a calculation analogous to the p
vious one shows that the variance of the quadrature am
tude qmf detected for the LO phasef can be written in
vector form as

Dqmf
2 5^q̂mf

2 &2^q̂mf&25
Dx

2b2 uT
•Sf•u, ~8!

whereSf is the covariance matrix of difference photocoun
for the local oscillator phasef, defined as

Sf5^DN̂j fDN̂j 8f&2^DN̂j f&^DN̂j 8f&. ~9!

The optimization problem is similar to the previous one, e
cept that now we need to find the eigenvector correspond
to the minimum eigenvalue of the matrixSf . In addition, the
eigenvalue problem has to be solved separately for eac
the phasesf used in the experiment in order to find th
setting of the LO phase that yields the strongest squeez
2-2



ic
u
i
t

n,
re

th
se

A
-m
th
r
fi

a
e
x
e
o-
tw
at

a

te
te
th

h
B
c
th

h a
re-

d
an
ch

per
. If

to
ac-
nal
of

st-

re
ence
ach
ea-
ce

f-

tect
ine

el

lec-
tor.
li-

er
er

its
in

as
a

the
nal

gen-
e

as a

ion
on
of

ra
M
te
nd
e a

MODE OPTIMIZATION FOR QUANTUM-STATE . . . PHYSICAL REVIEW A 67, 032102 ~2003!
We note that we are able to resort to standard numer
methods for solving symmetric eigenvalue problems beca
the quantity used as the optimization criterion is quadratic
the quadrature amplitude operators. In a general case
optimization criterion can be a highly nonlinear functio
which makes the optimization problem significantly mo
complicated.

III. EXPERIMENTAL SETUP

The experimental arrangement is nearly the same as
used in Ref.@17#, and a schematic is shown in Fig. 1. We u
a frequency doubled Nd:YVO4 laser, which produces a
continuous-wave output at 532 nm, as our light source.
acousto-optic modulator acts as a shutter to produce 10
long light pulses synchronized with the exposure time of
charge-coupled device~CCD! array. A polarizer-analyze
pair adjusts the light intensity, and a single-mode optical
ber spatially filters the beam.

A l/2 plate allows us to adjust the splitting ratio on
polarizing beam splitter~PBS! that constitutes the entranc
to a near common-path interferometer. The signal beam e
the beam splitter vertically polarized and travels count
clockwise around the ring, while the LO is horizontally p
larized and travels clockwise. The relative phase of the
beams is adjusted with a liquid crystal variable wave pl
whose axes are aligned so that it provides a 0–2p rad phase
shift to the LO, but does not affect the signal beam.

We modify the spatial structure of the signal beam with
mode shaper, as discussed further below. The signal and
LO return to the PBS and emerge from the interferome
spatially overlapped, but with orthogonal polarizations. Af
leaving the interferometer the beams pass through ano
combination of al/2 plate and a PBS. Thel/2 plate rotates
the polarizations of the signal and the LO beams, so that t
are at 45° with respect to the axes of the PBS, so the P
acts as a 50:50 beam splitter on which the signal and lo
oscillator beams interfere. The beams emerging from

FIG. 1. The experimental apparatus: ND stands for neut
density filter, PBS stands for polarizing beam splitter, and AO
stands for acousto-optic modulator. In the near common-path in
ferometer the polarizations and directions of the beams are i
cated. The AOM, shutter, variable wave plate and CCD array ar
under computer control.
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PBS are focused perpendicular to the plane of Fig. 1 wit
cylindrical lens, and are detected on spatially separate
gions of a CCD array.

The CCD is a 10031340 array of 20320mm2 pixels. It
has a quantum efficiency of'90% at 532 nm and is coole
to 2110 °C yielding a negligible dark-count rate of less th
1 electron per pixel per hour. The read out rate for ea
exposure is'15 Hz.

Registering the pixels on the two outputs to ensure pro
subtraction is extremely important in these experiments
the pixels are not properly registered, we are unable
achieve shot-noise limited detection. Pixel registration is
complished with the signal beam blocked, so that the sig
is in a vacuum state. The procedure is a combination
finely adjusting the optical alignment and numerically adju
ing the center pixels of the two images.

Finally, in order to eliminate offsets in our quadratu
measurements, we measure the average vacuum differ
level by blocking the signal beam after measurement of e
LO phase. This vacuum level is subtracted from the m
sured difference number to yield the corrected differen
numberDNj2^DNj&vac. We actually use the corrected di
ference number in place ofDNj in Eq. ~1! when we calculate
the quadrature amplitudes. Further details of how we de
the beams, register the pixels on the two outputs, determ
the LO amplitudeb, and subtract the vacuum signal lev
can be found in Ref.@17#.

IV. EXPERIMENTAL RESULTS

The first signal mode we examined was one whose e
tric field varied linearly across the surface of the detec
Mathematically, the field mode we were attempting to dup
cate was one whose functional form was

ulin~x!5S 12

Dx
3D 1/2

x. ~10!

Experimentally, we do this by inserting a microscope cov
slip halfway into the signal beam. The tilt angle of the cov
slip is adjusted to provide ap ~or an odd multiple ofp!
phase shift between the two halves of the beam. Near
center, the far-field diffraction pattern of a beam modified
this way is that of a linear electric field.

In Fig. 2~a!, we show the corrected difference number
a function of pixel number across the array. This is for
single exposure of the array, and thus contains all of
quantum noise associated with detecting a very weak sig
beam. We collect 36 200 shots of such data~200 shots/phase
angle, 181 phase angles varying between 0 and 2p!, compute
the correlation matrix@Eq. ~5!#, diagonalize the matrix and
determine the eigenmode corresponding to the largest ei
value. This is the modeuopt(x) that maximizes the averag
photon number, and it is also plotted in Fig. 2~a!. This mode
is found to have an average photon number of 2.3, and h
nearly linear variation with position, as expected.

Now that we have determined the optimal mode funct
uopt(x), we substitute it for the measured mode functi
um(x) in Eq. ~1! to determine the quadrature amplitudes

l-

r-
i-
ll
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DAWES, BECK, AND BANASZEK PHYSICAL REVIEW A67, 032102 ~2003!
our individual exposures. These quadrature amplitudes
then used to find the quantum state of this mode using Q
We determine the state in terms of its density-matrix rep
sentation in the Fock state basis. In Fig. 3, we plot the
perimentally determined photon number distributionP(n)
for this optimal mode. Also shown in Fig. 3 is the distrib
tion for a theoretical coherent state with the same aver
photon number. We see that our state is reasonably well
scribed by a coherent state.

In Fig. 2~b!, we show a comparison between the optim
mode and a purely linear mode@Eq. ~10!#. This linear mode
represents ana priori ‘‘best guess’’ as to what mode w
would expect to see in this experiment. We can calculate
state of this linear mode, and also determine its average
ton number, and we find that it has an average of 2.2 p
tons. This means that our optimal mode has a slightly hig
average photon number, but our best guess was still rea

FIG. 2. In ~a!, we show the corrected difference number as
function of pixel number against the right axis for a signal mo
that varies linearly across the detector. Plotted against the left ax
the mode that maximizes the average photon number. In~b!, we
compare the optimal mode to ana priori ‘‘best guess’’ linear mode.

FIG. 3. Photon number distribution of the measured state co
sponding to the optimal mode when the signal varies linearly ac
the array. The points represent measured values, while the
correspond to a theoretical coherent state having the same m
number of photons. The average photon number is 2.3.
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ably good in this case. Finally, we can compute what
would have got if we had used point detectors instead
array detectors. We do this by finding the state correspond
to a mode that is constant across the face of the detector
find this mode to have an average of 0.4 photons, so we
about a five-fold increase in detection efficiency when us
array detectors to detect this particular signal mode wit
plane-wave LO.

We have also examined a signal mode that has a s
soidal variation of electric field across the array. We cre
this field by using a double slit as our mode shaper, wh
produces a sinusoidal field in the far field. Figure 4~a! shows
the corrected difference number taken from a single expos
of the array, as well as the optimal mode computed fr
36 200 exposures. The single exposure data here looks
noisy than in Fig. 2~a!, but the main reason for this is that th
signal level is higher in this case. We find the optimal mo
here to have an average of 4.8 photons.

Before computing the state of this signal mode, we ma
one more correction to our data that we did not need to m
to the linear mode data. Because the slits block a large f
tion of the signal beam in the interferometer, we must ha
substantially more light present in the signal arm of the
terferometer. We find that this light creates a background
our array that must be accounted for. Subtraction of
vacuum signal as described above eliminates imbalanc
the LO, but since the signal is blocked in order to do th
correction it cannot eliminate background associated with
signal beam. We eliminate this background on the signal
noting that becauseq̂mf1p52q̂mf the phase average of th
quadrature amplitudes must be zero:

E
0

2p

df^q̂mf&50. ~11!

is

e-
ss
ars
an

FIG. 4. In ~a!, we show the corrected difference number as
function of pixel number against the right axis for a signal mo
that varies sinusoidally across the detector. Plotted against the
axis is the mode that maximizes the average photon number. In~b!,
we compare the optimal mode to ana posteriori sinusoidal mode
having the same period and phase as the optimal mode.
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MODE OPTIMIZATION FOR QUANTUM-STATE . . . PHYSICAL REVIEW A 67, 032102 ~2003!
Any difference from zero is attributable to background in o
signal beam, so we subtract off this difference from t
quadrature amplitudes before computing the quantum st

The photon number distribution for this mode is shown
Fig. 5, and once again we find that our state is reason
well described by a coherent state. It is interesting to n
that Fig. 5 indicates there is a very small probability that t
state contains more than 10 photons. Using the generou
sumption of 10 photons and looking back at Fig. 4~a! shows
that on this single shot there is less than 1/2 a signal pho
per pixel ~there are thousands of LO photons per pixel!, yet
we still see a strong interference pattern. So, thinking
terms of photons makes the single-shot data of Fig. 4~a!
seem surprising indeed.

In Fig. 4~b!, we show a comparison between the optim
mode and a pure sinusoidal mode. In this case, the sinus
mode was not chosen usinga priori knowledge of the mode
but was instead chosena posteriorigiven the optimal mode
it is the sinusoidal mode that has the same period and p
as the optimal mode. This mode is found to have a mea
4.6 photons. This is fairly close to the optimal value, and t
is not surprising because the modes are seen to be near
same in Fig. 4~b!.

By looking solely at the measured difference numbers
Fig. 4~a!, one might at first glance think that the optim
mode would have a slightly smaller period than the o
found from the algorithm. However, by using a sinusoid
mode that, by eye, appears to fit this corrected differe
data better, we obtain a measured average photon numb
only 3.6 photons. In this case, the algorithm works sign
cantly better than the eye. We also find that single ar
integrating detectors would measure a state with an ave
of only 0.13 photons, so once again we find that arrays o
a dramatic improvement over single detectors.

V. CONCLUSIONS

We have shown that it is possible to find the ‘‘optima
signal mode when performing quantum-state tomogra
with array detectors. Here, we have explicitly derived t
procedures necessary to find the mode which maximizes
average photon number, or maximizes the amount of qua

FIG. 5. Photon number distribution of the measured state co
sponding to the optimal mode when the signal varies sinusoid
across the array. The points represent measured values, whil
bars correspond to a theoretical coherent state having the s
mean number of photons. The average photon number is 4.8.
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ture squeezing. We have experimentally demonstrated
technique for maximizing the average photon number.

In addition to the obvious benefits, mode optimizati
offers other important information to the experimenter
well. For instance, in the experiments with a double slit
our signal beam we expected to see sinusoidal frin
emerge as being the optimal mode. In runs where this
not the case, it indicated to us that there was likely an ali
ment error somewhere in our system. Thus, finding the o
mal mode provided information that helped us to impro
the alignment of our system; something thata priori knowl-
edge of what the mode should look like could never do
itself.

In some cases finding the optimum mode might be e
more interesting than finding the quantum state. For
ample, consider the case of the squeezed mode generat
a traveling wave optical parametric amplifier pumped with
Gaussian beam. Of course, one wishes to find the max
squeezing, but it is especially interesting to examine what
exact shape of this maximally squeezed mode is. There a
few references that discuss theoretically this problem@21–
23#. There have also been experiments that generate an
mode that better matches this squeezed mode, and h
observe larger amounts of squeezing@24#. However, there
has been no experimental effort to date on explicitly sear
ing out the mode that truly maximizes the amount of sque
ing. Such experiments are possible using array detectors

Experiments detecting nonclassical light with arra
would be difficult, but we believe that they should not be a
more difficult than similar experiments with point detecto
One big challenge is in registering pixels on the two imag
As described above, registration is done with a vacuum
nal beam~the average difference numbers and the noise le
of the difference numbers are quite sensitive to pixel reg
tration! so registration should be no more difficult with no
classical signal beams than it is with classical beams. A
the phase fronts and timing of the signal and the LO bea
must be matched, but this is also the case in experim
involving point detectors, and experimenters have develo
ingenious schemes for doing this~see, for example, Ref
@25#.! Indeed, this alignment may be easier to do with arr
detectors because the experimenter will likely havesome
idea of what the optimal mode shape will be~e.g., it will
likely be shaped like a ‘‘bump’’ as opposed to having fring
across it!, and this can be used to improve the alignment
the phase fronts.

Ideally one would like to have a means of using unb
anced array detection in order to eliminate the need to r
ister pixels. Unbalanced array detection has been use
measurements of theQ function @18#, but so far has not been
demonstrated for Wigner function or density-matrix me
surements. We are currently exploring possibilities for unb
anced measurements of the density matrix.
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