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| propose a method for measuring the quantum state of an optical field that occupies a mode having a
complicated spatial structure. The technique uses array detectors and a single, plane-wave local oscillator
beam. The advantage of using array detectors is that the local oscillator is not mode matched to the
field being measured, yet the deleterious effects of this mismatch on the effective detection efficiency are
greatly reduced compared to using single detectors. Indeed, when the spatial mode of the signal field is
describable by a real function, the effective mode-matching efficiency is unity.

PACS numbers: 42.50.Ar, 03.65.Bz

Quantum state tomography (QST) is a well established
technique for measuring the quantum mechanical state of
a light mode [1-3]. Since its first experimental demon-
stration in Ref. [2], it has seen numerous theoretical and
experimental augmentations (for reviews, see Refs. [4,5]).
This work has included techniques for measuring multi-
mode systems [6—9], and extensionsto state measurements
of molecular vibrations[10], trapped ions[11], and atomic
beams [12].

The usual state-measurement technique involves inter-
fering the signal field to be measured with a coherent-state
local oscillator (LO) on a beam splitter [2,3]. Interference
between the signal and LO fields is essential, and any
mode mismatch (be it spatial or time/frequency) between
the signal and the LO effectively acts as aloss of detection
efficiency which degrades the measurement [3,4]. It is
well known that loss of efficiency smooths the measured
distributions in QST, an undesirable effect as it can mask
nonclassical effects. For example, the sgueezed mode
emitted from an optica-parametric amplifier (OPA)
pumped by a Gaussian beam is known to have a com-
plicated spatial structure [13,14]. This fact makes it
extremely difficult to mode match an LO to this squeezed
field [15] and can severely reduce the detected squeezing.

Here | present a new technique that uses array detectors
to measure the quantum state of an optical field. Thistech-
nigue is novel in that the use of array detectors can elimi-
nate the effective losses incurred due to mode mismatch
between the signal and local oscillator fields. In other
words, the LO and signal fields are not mode matched, yet
vacuum noise does not leak in and degrade the state mea-
surement of the signal field. Experimentally this offers an
advantage, because it meansthat one may use aplane-wave
LO to measure a field with a complicated mode structure
(such as the squeezed mode of an OPA) with no loss of
efficiency due to mode mismatch.

Consider anarrow-band, el ectromagnetic field propagat-
ing in the z direction. At z = 0, in a plane perpendicular
to the propagation direction, the operator for the positive-
frequency part of the electric field can be expressed as
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where w isthe mean frequency of the field, L isthelongi-
tudinal quantization length, and x and y are the transverse
coordinates in this plane. The sum is over a complete set
of independent modes, with a, being the annihilation op-
erator and u,,(x, y) being the mode function corresponding
to mode n. The mode functions form an orthonormal set
of basis functions:

D,/2 D,/2

dx dy u:(x7y)un’(x’)7) = 6n,n” (2)
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where D, and D, are the quantization lengths (detector
widths) in the x and y directions. As will be shown be-
low, by using the measurement scheme described in this
Letter, it is possible to select out a single mode from the
sum in Eqg. (1). This mode is referred to as the measured
mode, and | denote it by n = m. This measured mode is
described by the spatial function u,,(x,y), and al of the
other mode functions in Eg. (1) can be obtained from it
via the standard Schmidt procedure [16].

Thisfield isto be detected with an array detector, located
inthe plane z = 0 wherethefield is quantized. The detec-
tor consists of atwo dimensional N X N’ array of adjacent
photodetectors (pixels). Each pixel has an area of (6x =
D./N) X (6y = D,/N'), and the pixels are labeled by
their x and y coordinates. x; = jéx and y; = j'by,
wherej = 0,*1,+2,...,=M (N = 2M + 1), and like-
wise for j'.

Since discreet pixels are being used, it is convenient to
express the normalization condition of Eq. (2) in terms of
a discreet sum as

M
8x8y > u(xyi)uw(x,yp) = S (3
Jj'=—M
Furthermore, | note one other property of the mode func-
tions that will be of use later on. If one of the mode func-
tions [say, u,/(x,y)] is real, then not only is Eq. (3) true,
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but also . @) al)
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_Consider the arrangement shown in Fig. 1, where thgpege emerging fields are incident on array detectors lo-

tering the other input port of the beam splitter is ﬂe]g The number of photons incident on pixgl j’ of array
which, in the detector plane, may be written as win atimeT is given by the operator [17]
(+) 27 hw 1/2 R R xj+t0x/2 [yy+8y/2
2= () S b, ® Ry = [
] 27Tﬁw —ox/2 Jyy—sy/2
In Eq. (5) b, is the photon annihilation operator for the X dx dyEiL ', ) B (x,y). (7)

mode having spatial mode functian(x,y). The mode

functionsv,(x, y) are orthogonal and satisfy the same nor-The corresponding operator for arrayis of the same

malization conditions as the functions (x,y) given in  form, with u replaced byv. To evaluate this expression,

Eqg. (2) but need not take the same functional form as theombine Egs. (1), (5), and (6a) and substitute them into

u,'S. Eqg. (7). Making the simplifying assumption that the pixel
The fields leaving the beam splitter are denatgdand  dimensionsdx X 6y are small enough so that the mode

E,, and for a particular choice of the beam splitter phasdunctions which make ugE, and Ez are approximately

are given by constant across a given pixel, it can be shown that
|
N 6x8ycT ot Aty
Nyjjr = oL {Z Jran’”n(xj,)’j’)”n’(xj,yj’) + sz by (xj,yj)ve(xj,yjr)
n,n' 1l
+ Z[azélu:(xja)’j’)vl(xjan’) + Hcl}, 8)

n,l

where H.c. denotes the Hermitian conjugate. The exprleskerms in Eq. (9) will be those proportional . Thus,
sion forﬂfyjj/ is nearly identical, the only difference be- it is reasonable to trace EqQ. (9) over the state of the LO
ing that the last sum (over and!) is subtracted rather field, which replaces the operators for the LO field by their
than added. corresponding coherent state amplitudes

The operator of primary interest in balanced detection

. . . N 6xé8 ;
is that cor_respopdlng to the difference number of photons ANjjr g = 0. f) )yl/z B Z[anun(x,,yj Je ™!
for each pixelAN;j = N,y — N, ;. lfweletL = cT,
this difference number is + a) Mn(xj,yj/)e 4], (11)
AN = 6x8y Z[&U;zu*(x yi)v(xi,y) + Hel. where the subscripp indicates that this operator depends
& Py " e 7 on the phase of the local oscillator. This same approxi-

(9)  mation is often made in the theory of balanced homodyne
detection using nonarray detectors, and it is expected to be
equally valid here (for a further discussion of this approxi-
mation, see Ref. [18]).

Now assume that one wishes to perform a measurement
on a particular mode = m of the signal field; further-
%ore assume that, (x,y) is real. Multiplying Eq. (11)

Equation (9) is a general expression, which holds re-
gardless of the states of the fieldlg and Eg. | now spe-
cialize on the case where the LO fidli} is a single-mode,
plane-wave coherent state. | assume that the LO field is in
cident perpendicular to the detector arrays, with all of th
other plane-wave modes being in the vacuum. The fiel
state forEp is thus|o,...,0, Be'?,0,...,0), whereB is

Y un(xj,y;) and summing ovey and;’, with the aid of
gs. (3) and (4), demonstrates that

the amplitude of the coherent state, agdis its phase. Z AR _ B
The properly normalized spatial function for this mode is =3 ji o Um(xj, yjr) = (D.D,)!/?
1 X [ame ™ + af '?]. (12)
vo(x,y) = DD (10)

The term in brackets on the right side of this equation
If the amplitude of this state is larg8 (> NN’;i.e., 8 is is proportional to the operator for the rotated quadrature
much larger than the total number of pixels) the dominanamplitude of moden:
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The fact that there is no loss of efficiency due to LO
v Eg mode mismatch when using an array detector is best illus-

Y trated by an example. Assume that the signal beam occu-
pies the spatial mode

wten) = (525
Dy

wherek = 27/D,. The LO beam is a plane wave nor-
mal to the detector face, and its mode function is given
in Eg. (10). If we perform homodyne detection of the
signal mode given by Eg. (14) with this local oscilla-
E, tor using standard (i.e., nonarray) detectors of dimensions

D, X Dy, the mode-matching efficiency,,, is given by
EENNERNNERENRNRNE (see, for example, Ref. [4)

D, /2 D, /2
—;1 <4— )
| (”r]mm)l/2 = dx dy Ulo(X,)’)us(X,y) =0.
SX -D./2J—D,/2

FIG. 1. The experimental apparatus; BS stands 3050
beam splitter. The field being measurégd has a complicated So, for this particular choice of modes the signal and
spatial structure, while the LO field is a plane wave. For | O gre orthogonal. A standard homodyne detector is com-

clarity only the detector pixels in the direction have been . ", - . L -
show);l. TKey direction is pperpendicular to the page, so therepIeter insensitive to this signal field and will yield no in-

are also rows of pixels in each detector above and below thfPrmation about it.
plane of the page. To demonstrate how the array detector responds to the

mode given by Eq. (14), assume that this mode is in a co-
herent state with an amplitude of;,, and all other modes

BS

1/2
) cogkx), (14)

HENEENEENNNENEREE

Ea

(15)

F L[A “id 4 4t eid] of the signal field are in the vacuun, ..., 0, a;,0, ... 0).
m e ame a,e . .. .
V2 For simplicity | examine only the mean value of the de-
1 (D.Dy /2 M R tected quadrature amplitude to show that the array detec-

= 8 (T) Z ANjj gum(xj,yj). (13)  tor is sensitive to a field in this mode. Setting= s in
Jj==M Eqg. (13), it is readily seen that
Equation (13) is the main result of this Letter. By si- | M R

multaneously measuring the photon difference number for (Zsp) = — Z (AN;j ) codkx;) . (16)

each pixelAN;; 4 it is possible to determine the rotated Jj'=—M
quadrature amplitude,, 4 corresponding to a particular Using Eq. (11) it is found that
spatial mode by combining the difference numbers accord- o
ing to Eq. (13). The rotation angkg is varied by adjusting (AN 4) = Sxdyv2 B
the phase of the LO beam. The measured mode is chosen D\D,
by the selection of the spatial mode functigp(x, y), with (17)
the constraint that this mode function must be real.
It is well known that if one can perform measurements Substituting this expression into Eq. (16) and summing
corresponding ta,, 4 for 0 = ¢ =< 7, then it is possible Yields
to determine the quantum mechanical state of the field cor- 1 ' '
responding to mode: [1-5]. Thus, Eq. (13) demonstrates (sp) = —=[ase ™ + ale'?]. (18)
that an array detector is capable of making measurements Z
which will allow one to determine the quantum mechani-This is the same expression one would find for a stan-
cal state of an arbitrary mode of an optical field. dard homodyne detector with a perfectly mode-matched
The fact that an array detector can measure the state bfD—the amplitude has not been decreased by a factor
an optical field is not surprising. What probably is sur- proportional to the overlap of the signal and LO spatial
prising is that in this detection scheme the mode funcimodes.
tions of the measured modsg,(x, y) and of the LO mode The detector itself yields measurements &N, 4,
v, (x,y) arenot the same, but this mode mismatch doeswhile according to Eq. (13) the quadrature amplitude
not reduce the effective detection efficiency of the meax,, 4 corresponding to the measured mode is determined
surements. Thus, if the measured mode function is thby summing the measured values AfV;; 4 with a
same as the mode function of the actual sigmal= s),  weighting factor given by the mode functiom, (x,y).
then the effective mode matching efficiency is unity. Thus, by choosing different mode functions, it is possible

[age™'® + alel?] cogkx;).
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One could thus imagine taking a set of data and search-

ing for the spatial mode which contains some desired
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