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I propose a method for measuring the quantum state of an optical field that occupies a mode having a
complicated spatial structure. The technique uses array detectors and a single, plane-wave local oscillator
beam. The advantage of using array detectors is that the local oscillator is not mode matched to the
field being measured, yet the deleterious effects of this mismatch on the effective detection efficiency are
greatly reduced compared to using single detectors. Indeed, when the spatial mode of the signal field is
describable by a real function, the effective mode-matching efficiency is unity.

PACS numbers: 42.50.Ar, 03.65.Bz
Quantum state tomography (QST) is a well established
technique for measuring the quantum mechanical state of
a light mode [1–3]. Since its first experimental demon-
stration in Ref. [2], it has seen numerous theoretical and
experimental augmentations (for reviews, see Refs. [4,5]).
This work has included techniques for measuring multi-
mode systems [6–9], and extensions to state measurements
of molecular vibrations [10], trapped ions [11], and atomic
beams [12].

The usual state-measurement technique involves inter-
fering the signal field to be measured with a coherent-state
local oscillator (LO) on a beam splitter [2,3]. Interference
between the signal and LO fields is essential, and any
mode mismatch (be it spatial or time/frequency) between
the signal and the LO effectively acts as a loss of detection
efficiency which degrades the measurement [3,4]. It is
well known that loss of efficiency smooths the measured
distributions in QST, an undesirable effect as it can mask
nonclassical effects. For example, the squeezed mode
emitted from an optical-parametric amplifier (OPA)
pumped by a Gaussian beam is known to have a com-
plicated spatial structure [13,14]. This fact makes it
extremely difficult to mode match an LO to this squeezed
field [15] and can severely reduce the detected squeezing.

Here I present a new technique that uses array detectors
to measure the quantum state of an optical field. This tech-
nique is novel in that the use of array detectors can elimi-
nate the effective losses incurred due to mode mismatch
between the signal and local oscillator fields. In other
words, the LO and signal fields are not mode matched, yet
vacuum noise does not leak in and degrade the state mea-
surement of the signal field. Experimentally this offers an
advantage, because it means that one may use a plane-wave
LO to measure a field with a complicated mode structure
(such as the squeezed mode of an OPA) with no loss of
efficiency due to mode mismatch.

Consider a narrow-band, electromagnetic field propagat-
ing in the z direction. At z � 0, in a plane perpendicular
to the propagation direction, the operator for the positive-
frequency part of the electric field can be expressed as
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where √ is the mean frequency of the field, L is the longi-
tudinal quantization length, and x and y are the transverse
coordinates in this plane. The sum is over a complete set
of independent modes, with ân being the annihilation op-
erator and un�x, y� being the mode function corresponding
to mode n. The mode functions form an orthonormal set
of basis functions:

Z Dx�2

2Dx�2

Z Dy�2

2Dy�2
dx dy u�

n�x, y�un0�x, y� � dn,n0 , (2)

where Dx and Dy are the quantization lengths (detector
widths) in the x and y directions. As will be shown be-
low, by using the measurement scheme described in this
Letter, it is possible to select out a single mode from the
sum in Eq. (1). This mode is referred to as the measured
mode, and I denote it by n � m. This measured mode is
described by the spatial function um�x, y�, and all of the
other mode functions in Eq. (1) can be obtained from it
via the standard Schmidt procedure [16].

This field is to be detected with an array detector, located
in the plane z � 0 where the field is quantized. The detec-
tor consists of a two dimensional N 3 N 0 array of adjacent
photodetectors (pixels). Each pixel has an area of �dx �
Dx�N� 3 �dy � Dy�N 0�, and the pixels are labeled by
their x and y coordinates: xj � jdx and yj0 � j0dy,
where j � 0, 61, 62, . . . , 6M �N � 2M 1 1�, and like-
wise for j0.

Since discreet pixels are being used, it is convenient to
express the normalization condition of Eq. (2) in terms of
a discreet sum as

dxdy
MX

j, j0�2M

u�
n�xj , yj0�un0�xj , yj0� � dn,n0 . (3)

Furthermore, I note one other property of the mode func-
tions that will be of use later on. If one of the mode func-
tions [say, un0�x, y�] is real, then not only is Eq. (3) true,
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dxdy
MX

j, j0�2M

un�xj , yj0�un0�xj , yj0� � dn,n0 �un0 real� .

(4)

Consider the arrangement shown in Fig. 1, where
signal fieldEA is incident on a50�50 beam splitter. En-
tering the other input port of the beam splitter is fieldEB

which, in the detector plane, may be written as
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b̂lyl�x, y� . (5)

In Eq. (5) b̂l is the photon annihilation operator for th
mode having spatial mode functionyl�x, y�. The mode
functionsyl�x, y� are orthogonal and satisfy the same n
malization conditions as the functionsun�x, y� given in
Eq. (2) but need not take the same functional form as
un’s.

The fields leaving the beam splitter are denotedEm and
En, and for a particular choice of the beam splitter pha
are given by
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1
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These emerging fields are incident on array detectors
cated equal distances behind the beam splitter.

The number of photons incident on pixelj, j0 of array
m in a timeT is given by the operator [17]

N̂mjj0 �
cT

2p h̄√

Z xj1dx�2

xj2dx�2

Z yj01dy�2

yj02dy�2

3 dx dyÊ�2�
m �x, y�Ê�1�

m �x, y� . (7)

The corresponding operator for arrayn is of the same
form, with m replaced byn. To evaluate this expression
combine Eqs. (1), (5), and (6a) and substitute them i
Eq. (7). Making the simplifying assumption that the pix
dimensionsdx 3 dy are small enough so that the mod
functions which make upEA and EB are approximately
constant across a given pixel, it can be shown that
N̂mjj0 �
dxdycT
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where H.c. denotes the Hermitian conjugate. The exp
sion for N̂n jj0 is nearly identical, the only difference be
ing that the last sum (overn and l) is subtracted rathe
than added.

The operator of primary interest in balanced detect
is that corresponding to the difference number of phot
for each pixel,DN̂jj0 � N̂m jj0 2 N̂n jj0 . If we let L � cT ,
this difference number is

DN̂jj0 � dxdy
X
n,l

�ây
n b̂lu

�
n�xj , yj0�yl�xj , yj0� 1 H.c.� .

(9)

Equation (9) is a general expression, which holds
gardless of the states of the fieldsEA andEB. I now spe-
cialize on the case where the LO fieldEB is a single-mode,
plane-wave coherent state. I assume that the LO field is
cident perpendicular to the detector arrays, with all of
other plane-wave modes being in the vacuum. The fi
state forEB is thus j0, . . . , 0, beif, 0, . . . , 0�, whereb is
the amplitude of the coherent state, andf is its phase.
The properly normalized spatial function for this mode

ylo�x, y� �
1

�DxDy�1�2 . (10)

If the amplitude of this state is large (b ¿ NN 0; i.e., b is
much larger than the total number of pixels) the domin
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terms in Eq. (9) will be those proportional tob. Thus,
it is reasonable to trace Eq. (9) over the state of the
field, which replaces the operators for the LO field by the
corresponding coherent state amplitudes

DN̂jj0 f �
dxdy

�DxDy�1�2 b
X
n

�ânun�xj , yj0�e2if

1 ây
n u�

n�xj , yj0�eif� , (11)

where the subscriptf indicates that this operator depend
on the phase of the local oscillator. This same appro
mation is often made in the theory of balanced homody
detection using nonarray detectors, and it is expected to
equally valid here (for a further discussion of this approx
mation, see Ref. [18]).

Now assume that one wishes to perform a measurem
on a particular moden � m of the signal field; further-
more, assume thatum�x, y� is real. Multiplying Eq. (11)
by um�xj , yj0� and summing overj andj0, with the aid of
Eqs. (3) and (4), demonstrates that

MX
j, j0�2M

DN̂jj0 fum�xj , yj0� �
b

�DxDy�1�2

3 �âme2if 1 ây
meif� . (12)

The term in brackets on the right side of this equati
is proportional to the operator for the rotated quadratu
amplitude of modem:
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FIG. 1. The experimental apparatus; BS stands for50�50
beam splitter. The field being measuredEA has a complicated
spatial structure, while the LO fieldEB is a plane wave. For
clarity only the detector pixels in thex direction have been
shown. They direction is perpendicular to the page, so the
are also rows of pixels in each detector above and below
plane of the page.

x̂m f �
1
p

2
�âme2if 1 ây

meif�
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1
b

µ
DxDy

2

∂1�2 MX
j, j0�2M

DN̂jj0 fum�xj , yj0� . (13)

Equation (13) is the main result of this Letter. By s
multaneously measuring the photon difference number
each pixelDNjj0 f it is possible to determine the rotate
quadrature amplitudexm f corresponding to a particula
spatial mode by combining the difference numbers acco
ing to Eq. (13). The rotation anglef is varied by adjusting
the phase of the LO beam. The measured mode is cho
by the selection of the spatial mode functionum�x, y�, with
the constraint that this mode function must be real.

It is well known that if one can perform measuremen
corresponding toxm f for 0 # f # p, then it is possible
to determine the quantum mechanical state of the field c
responding to modem [1–5]. Thus, Eq. (13) demonstrate
that an array detector is capable of making measurem
which will allow one to determine the quantum mechan
cal state of an arbitrary mode of an optical field.

The fact that an array detector can measure the stat
an optical field is not surprising. What probably is su
prising is that in this detection scheme the mode fun
tions of the measured modeum�x, y� and of the LO mode
ylo�x, y� are not the same, but this mode mismatch do
not reduce the effective detection efficiency of the me
surements. Thus, if the measured mode function is
same as the mode function of the actual signal�m � s�,
then the effective mode matching efficiency is unity.
5750
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The fact that there is no loss of efficiency due to LO
mode mismatch when using an array detector is best illu
trated by an example. Assume that the signal beam occ
pies the spatial mode

us�x, y� �

µ
2

DxDy

∂1�2

cos�kx� , (14)

wherek � 2p�Dx. The LO beam is a plane wave nor-
mal to the detector face, and its mode function is give
in Eq. (10). If we perform homodyne detection of the
signal mode given by Eq. (14) with this local oscilla-
tor using standard (i.e., nonarray) detectors of dimensio
Dx 3 Dy , the mode-matching efficiencyhmm is given by
(see, for example, Ref. [4])

�hmm�1�2 �
Z Dx�2

2Dx�2

Z Dy�2

2Dy�2
dx dy ylo�x, y�us�x, y� � 0 .

(15)

So, for this particular choice of modes the signal an
LO are orthogonal. A standard homodyne detector is com
pletely insensitive to this signal field and will yield no in-
formation about it.

To demonstrate how the array detector responds to t
mode given by Eq. (14), assume that this mode is in a c
herent state with an amplitude ofas, and all other modes
of the signal field are in the vacuum:j0, . . . , 0, as, 0, . . . 0�.
For simplicity I examine only the mean value of the de
tected quadrature amplitude to show that the array dete
tor is sensitive to a field in this mode. Settingm � s in
Eq. (13), it is readily seen that

	x̂s f� �
1
b

MX
j, j0�2M

	DN̂jj0 f� cos�kxj� . (16)

Using Eq. (11) it is found that

	DN̂jj0 f� �
dxdy

p
2

DxDy
b�ase

2if 1 a�
s eif� cos�kxj� .

(17)

Substituting this expression into Eq. (16) and summin
yields

	x̂sf� �
1
p

2
�ase

2if 1 a�
s eif� . (18)

This is the same expression one would find for a sta
dard homodyne detector with a perfectly mode-matche
LO— the amplitude has not been decreased by a fac
proportional to the overlap of the signal and LO spatia
modes.

The detector itself yields measurements ofDNjj0 f,
while according to Eq. (13) the quadrature amplitud
xm f corresponding to the measured mode is determin
by summing the measured values ofDNjj0 f with a
weighting factor given by the mode functionum�x, y�.
Thus, by choosing different mode functions, it is possibl
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to determine the quadrature amplitudes of many differe
spatial modes for any given set of measurementsDNjj0 f.
One could thus imagine taking a set of data and searc
ing for the spatial mode which contains some desire
property— the mode that has the most squeezing, f
example.

Despite the fact that the quadrature amplitudes of ma
modes may be measured simultaneously, it is not possi
to use this technique directly to measure the joint quantu
state of these modes. This is because all of the modes
measured with the same rotation anglef; to determine the
joint quantum state each mode must have its own indepe
dently adjustable phase angle [6,7]. It may be possib
however, to modify the implementation described here
allow one to determine the full joint quantum state of tw
or more modes, as has been done for standard homod
detectors [7–9].

The effect of having less than unity quantum efficienc
for the detectors in the array has not been explicitly co
sidered here, but this effect is essentially the same as
the case of nonarray detectors. If each pixel has qua
tum efficiencyh, then the measured quantum distributio
function is not simply the Wigner function but is instead a
s-parametrized distribution, withs � �1 2 1�h� [4,5].

In conclusion, I have presented an analysis of quantu
state tomography based on array detectors. I have sho
that it is possible to measure the rotated quadrature am
tude of a desired spatial mode using this technique; hen
it is possible to determine the quantum state of this mod
The technique uses a plane-wave local oscillator beam t
is not mode matched to the signal mode, but this mode m
match does not necessarily lead to any loss of efficien
in the measurements. The measured mode is determi
by the experimenter during the data analysis, and the o
limitation on this mode is that its mode function mus
be real.

This measurement technique could prove to be e
tremely valuable for studying fields generated by nonline
optical processes which produce fields having complicat
spatial structure [13,14,19]. It could also be useful fo
studying quantum effects in optical imaging [20,21].
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