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Chapter 0:  Math review 

• notation and units 
• significant digits 
• order of operations 
• exponents and logarithms 
• coordinates 
• angles, geometry, trigonometry 
• conic sections 
• lines and interpolation 
• averaging and percentages 
• some algebra mistakes and how to avoid them 
• sample problems 

Notation and units 
 In what’s called “scientific notation” we write numbers as using exponents, usually of 10. As an easy 
example, consider the number 100. It is 10 times 10, and we can write it as 102. Here is a table of a few numbers, 
both in their decimal form and in scientific notation: 

Many calculators will readily swap their displays between decimal and scientific. You probably want to find one that 
does this and learn how to use that function. 
 We will be using numbers that vary wildly in size (which is another reason to be comfortable with scientific 
notation) and often we will use shorthand notation for units. For instance, the standard unit of measurement in the 
metric system is the meter. Using the meter as an example, let’s look at some prefixes with which you should be 
familiar (and a few more that are fun simply because they are so extreme). You probably already know the 
centimeter, abbreviated cm, which is 1/100 of a meter. Most of the interesting units come in multiples of 103. Here’s 
a table of units: 

decimal scientific

13 billion = 13,000,000,000 1.3 ⋅ 1010  or 13 ⋅ 109  

2,504,312 2.504312 ⋅ 106

– 4.3 – 4.3 ⋅ 100

0.00135 1.35 ⋅ 10-3

millimeter (mm) 10-3 m  kilometer (km) 103 m

micrometer or micron (µm) 10-6 m  megameter (Mm) 106 m

nanometer (nm) 10-9 m  gigameter (Gm) 109 m

picometer (pm) 10-12 m  terameter (Tm) 1012 m

femtometer (fm) 10-15 m  petameter (Pm) 1015 m

attometer (am) 10-18 m  exameter (Em) 1018 m

zeptometer (zm) 10-21 m  zettameter (Zm) 1021 m

yoctometer (ym) 10-24 m  yottameter (Ym) 1024 m
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Significant digits 
 Your calculator will give you answers with quite a few decimals places if you let it. Those digits may not be 
meaningful. For instance, if we multiplied 3 times 4, we expect to get 12. On the other hand, if it were 3.0 times 4.0, 
it would be correct to say 12.0. How come?  Think back to when you learned to round off numbers. For instance, 3.3 
is, rounded to only one digit, equal to 3, and 4.2, equal to 4. But if you multiplied 3.3 times 4.2, you’d expect to get 
a different answer than just 12; in fact, you get 13.9. If you are told that a particular value is 3, that doesn’t convey 
as much information as if you are told that the value was measured to be 3.0, or 3.3, either or which could be 
rounded down to 3. If you don’t know your input values any more precisely than that they are 3 and 4, it would be 
misleading to claim that they multiply to 12.0, or, worse, 12.000, rather than 12.  
 A more relevant example:  M 31, the galaxy in Andromeda, is 2 ½ million light years away. We do not 
know its distance accurately enough to say that it is 2.500000 ⋅106 light years away, in addition to which, it’s an 
extended object, meaning that all parts of it are not exactly, precisely, the same distance from us.  
 Now, an example of where significance can be confusing:  consider the surface area of a sphere. It is 4πr2. 

That 4 is exactly 4, but we rarely write it as to indicate that fact. Sorry. 
 For working the problems in this text, keep two things in mind:  First, if you do a calculation in multiple 
steps, keep the extra digits until the end and then round your final result down; you can lose actual significant, real, 
information if you round too often. Second, try not to report more digits than the number of digits given in the 
problem for observed quantities. 

Order of operations 
 In complex expressions we usually add parentheses to indicate which operations belong together. The 
parentheses are often omitted if the order of operations is clear. For instance, in an expression involving 
multiplication and addition the multiplication is normally assumed to occur first. For example, an expression such as 
2·5 − 6·3 would be evaluated as 10 − 18 = − 8. If we meant otherwise, we’d add parentheses. For example, if we had 
written 2 · (5 − 6·3), that would be evaluated as 2 · (5 −18) = 2 · (−13) = −26. 

Exponents and logarithms 
 You are probably comfortable with the idea that adding and subtracting are related operations, do and undo 
in some sense. For instance, if you add 6 to x, you can get back to x by subtracting 6. Written out, (x + 6) – 6 = x. 
Multiplying and dividing are similar. Sticking with 6, we could write (x ⋅ 6) / 6 = x. Logs and exponents are a similar 
sort of pair of operations. You are likely to be most familiar with working in base 10, where, again with 6, we could 
write 
  

 In this case we don’t have to stick with base 10, though. We often use e ( = 2.71828. . .) or sometimes 2, but 
rarely anything else. Here are some rules for working with powers, roots, logs and exponents. 
• Factorials: a! means 1 ⋅ 2 ⋅ 3 ⋅ . . up to a. 
 Ex.: 7! = 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅ 6 ⋅ 7 = 5040. 
• 0! by definition = 1 
• Powers:  an means a ⋅ a ⋅ a⋅ . . .n times.   
 Ex.:  23 = 2 ⋅ 2 ⋅ 2 (= 8). 
• If you multiply together two numbers written as powers, add the exponents: an⋅ am = an+m.  
 Ex.:  23 ⋅ 22 = 25 ( = 8 ⋅ 4 = 32). 
• a0 by definition = 1 
• a1/n means the nth root.  

 Ex.:  81/3 = , i.e., the cube root of 8, = 2. 

4.0

log(106 ) = 6.

83
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• a−n = 1 / an.  
 Ex.: 2−2 = 1 / (22) = ¼. 
• (an)m = (anm).  
 Ex.:  (23)2 = 23⋅2 = 26  (= 82 = 64); 

 Ex.:   

• if y = ax, then loga (y) = x. 
 Ex.: if 10x = 1000 → x = log10 (1000) = 3. 
 Ex.: if ex = 6 → x = loge (6) [which may be written ln (6)] = 1.8 
 Ex.: if log10 (y) = 1.4 → y = 101.4 = 25.1 
 Ex.: if log2 (y) = 17 → y = 217 = 1.3 ⋅ 105. 
• loga (x⋅y) = loga (x) + loga (y) 
 Ex.: log10 (2 ⋅ 5) = log(2) + log(5) = 0.3 + 0.7 =1.0 (check:  log(10) = 1) 
• loga (x/y) = loga (x) – loga (y) 
 Ex.: log10 (2/5) = log(2) – log(5) = 0.3 – 0.7 = – 0.4 (check: log(0.4) = – 0.4) 
• loga (yn) = n log (y) 
 Ex.: log10 (23) = 3⋅log(2) = 3⋅0.3 = 0.9 (check: log(8) = 0.9) 
• loga (y) = loga (b) ⋅ logb (y) 
 Ex.: log2 (12) = log2 (10) ⋅ log10 (12) = 3.322 ⋅ 1.08 = 3.59 (check: 23.59 = 12) 
Another conversion: ex = 100.4343x   and  ln (x) = 2.3026 log (x). 

Coordinates 
 The x-y coordinates with which you are probably most familiar are called Cartesian coordinates, after René 
Descartes. In two dimensions, they look like this: 

We could add a third dimension, a z axis, perpendicular to the other two, with one axis running in/out of the page. If 
you want to keep track of the mathematical terms, the x-value of a point is called the abscissa and the y-value is 
called the ordinate. 
 Instead of Cartesian coordinates, we might prefer in some circumstances to use polar coordinates. Let’s 
take our Cartesian example from above and superimpose polar coordinates: 

2( )3 = 23/2 = 2.8

Usually, the horizontal axis will be the x axis and 
the y axis will be vertical. Here we’ve added four 
points: 
  x            y 
-4.5          2 
-1.5         -3 
  0            0  
  2            3   
E.g., (x,y) = (2,3) means over 2 and up 3. 

Figure 0.1
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 There are two distinct ways of extending polar coordinates into three dimensions. In cylindrical 
coordinates, we take r and θ and add a vertical coordinate z, just as we did in the Cartesian case. More often in 
astronomy we will want spherical coordinates, where we add a second angle, so that we have an angle in the plane 
and an angle down from the vertical. Which angle is θ and which is ϕ may be flipped (physics tends to have one 
convention and mathematics has the other). 

Angles, Geometry, and Trigonometry 

 In two dimensions: The circumference of a circle = 2πr and the area of a circle = πr2. 

 In three: the surface area of a sphere = 4πr2 and the volume of a sphere =   

If you know some calculus, you can see in both of these examples that the former is the derivative of the latter 
expression. 
 There are 360 degrees in a circle, with each degree divided into 60 arcminutes and each arcminute divided 
into 60 seconds. We may write this as 
 1 ° = 60′ ; 1′ = 60 ″. 
 There are 2π radians in a circle. The radian is defined such that one radian has unit arc length along a unit 
circle. Because the circumference of the unit circle is 2π, there must be 2π radians in a full circle. 

The arrow drawn from the origin indicates the direction to the point 
with (x, y) coordinates (2, 3). The distance from the origin to that point 
is 3.6, at an angle from the horizontal of 56.3º. We may thus also 
describe the location of this point as being at (r,  θ) = (3.6, 56.3°). 

Figure 0.2

In spherical coordinates we would label our point as having 
coordinates (r, θ, ϕ). 

Figure 0.3

4
3
πr3.
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In terms of solid angles, there are 4π ster (or sr; steradians, for square radians) in a full sphere. 

A right triangle has one angle of 90°: 

Let (side opposite) = y, (side adjacent) = x, and (hypotenuse) = r.  
The trig functions are defined thusly: 
 sin θ  = y / r 
 cos θ  = x / r 
 tan θ  = sin θ / cos θ = y / x 
The Pythagorean theorem says that  
 (r)2 = (y)2 + (x)2. 
Example:  suppose that we are given that (side opp) = 5 and (side adj) = 9; solve the triangle. 

  

 The 3rd angle in the triangle must be 180° – (90° + 29°) = 61° 
Check this for consistency:  sin (29°) = 0.485; y / r = 5 / 10.3 = 0.485. 
 Note that the inverse trig functions, e.g., tan−1 (z)  do not mean “1 / tan (z)” but rather “what is the angle for 
which z is the tangent?”  Inverse in this case means undo the trig function rather than taking its reciprocal. Find a 
calculator that has inverse trig functions and learn how to use them. 
 In this example, we could have calculated tan−1 (0.556) in radians rather than degrees. We would have 
gotten 0.507 rad. One radian is equal to 57.3°; 57.3 ⋅ 0.507 = 29, telling us that 29° and 0.507 rad are the same angle. 
Note that your calculator is unlikely to calculate trig functions or inverse trig functions in arcseconds. There are 
many applications in astronomy where we are working with very small angles and will be using arcsec. Be careful! 

A related use of the term tangent is to refer to a line touching a circle in one point only, and thus being perpendicular 
to the radius of a circle: 

           Figure 0.4 — illustration of the radian.

           Figure 0.5 — a right triangle.

r = x2 + y2 = 92 + 52 = 10.3→
tanθ = y / x = 5 / 9 = 0.556;
tan−1(0.556) = 29!.
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Other trig functions:  Some times we will want the reciprocals of the sin, cos, or tan functions. Those functions are  
 1 / sin θ  = cosecant (θ ) = r / y 
 1 / cos θ  = secant (θ) = r / x 
 1 / tan θ  = cotangent (θ) = x / y 

For triangles that do not have a 90° angle the relationships between angles and sides are a little bit more 
complicated. Consider the following triangle with vertex angles denoted with the capital letters and side lengths 
denoted with the lower-case letters: 

The law of sines: [ a / sin (A) ] = [ b / sin (B) ] = [ c / sin (C) ]. 
The law of cosines: a2 = b2 + c2 – 2 ⋅ b ⋅ c ⋅ cos (A) 
 This works for the other two sides as well; just rotate through the letters. 
The area of an arbitrary triangle = ½ base ⋅ height. 

There are a few more esoteric trig functions that might come in handy if you need, for instance, the sin of the sum of 
two angles. Note that sin2θ  means (sinθ)2. 

  

Among other possibilities, the site: http://en.wikipedia.org/wiki/List_of_trigonometric_identities has a list of these 
and many other formulae involving trig functions. 

            

Figure 0.6 — Tangent line

   

    Figure 0.7 — a generic, non-right, triangle

sin2θ + cos2θ = 1
sin(θ ±ϕ ) = sinθ ⋅cosϕ ± cosθ ⋅sinϕ  [and → sin(2θ ) = 2sinθ ⋅cosθ ]
cos(θ ±ϕ ) = cosθ ⋅cosϕ ∓ sinθ sinϕ  [and → cos(2θ ) = cos2θ − sin2θ = 2cos2θ −1]
sin2θ = 1

2 (1− cos(2θ ))
cos2θ = 1

2 (1+ cos(2θ ))
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Conic sections 

Looking down on these various figures from above, they look approximately like this: 

An ellipse, in particular, is useful in astronomy because orbits (e.g., of planets around the Sun or two stars around 
each other) follow elliptical paths. 

We can describe an ellipse in either spherical or polar coordinates.   

In the next figure we will draw that line representing the sum of the distance from the foci to the ellipse to the point 
on the ellipse at left end of the major axis. In other words, the line goes left along the axis from the right focus to the 

Figure 0.8:  Slice a cone across, perpendicular to the vertical axis, and 
you get a circle. 

Slice it at a slight angle, get an ellipse. 

Slice it at an angle that is parallel to the side of the cone, and get a 
parabola. 

Slice it at an angle that is steeper than the side of the cone, and get a 
hyperbola.

hyperbola 

parabola 

ellipse 
circle 

Figure 0.9

     Where a circle has a radius, r, an ellipse is 
described by a semi-major axis, a, and a semi-minor 
axis, b. 
     An ellipse has two foci, f, such that the sum of the 
distance from the foci to the ellipse (at an arbitrary 
point P) is a constant. 
 (One focus, two foci.)     

Figure 0.10
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left end of the major axis and back to the left focus. The two segments of the line are offset a bit so you can see both 
of them: 

Let’s use this information to determine the relationship between the eccentricity, e, and the lengths of the axes. In the 
following sketch, the point P is at the top of the minor axis. Only half of the line from f to P to f is emphasized.  

In the following diagram we are showing polar coordinates, again only emphasizing the line from one focus to the 
arbitrary point P: 

The blue line, from focus to ellipse to other focus, is 
as long as the major axis, 2a. The piece that wraps 
around on the left is the same length as the piece that 
is missing on the right, hence a total length of 2a. 

Figure 0.11

By the Pythagorean theorem, we know that a2 = b2 + 
(ae)2. Rearranging,  
b2 = a2 ⋅ (1 – e2). 

The total area of an ellipse is 
A = πab. 

Figure 0.12

In this case the point P is a distance r away from the 
focus of interest, at an angle θ  from the horizontal. 

Figure 0.13
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The equation for the location of P in terms of (r, θ) is 

  

The smallest possible value for r occurs when θ is 0°. In that case, r = a (1– e).  
Where did that come from?  Expand the 1 – e2 term as (1 – e) ⋅ (1 + e). If cosθ = 1, then  
  

The (1 + e) terms cancel. Similarly, the largest possible value for r occurs when θ is 180°. In that case, r = a (1+ e).  

Lines and interpolation 
 If you have data that are described by a smoothly varying function you may find yourself needing to 
estimate the value the function would take at a point intermediate between some of your data points. Here are five 
data points that fall along a line: 

What is the value of y at an x value of 4.0?  Lines are described by a function of the form  
 y = mx + b, 
where m is the slope of the line and b is the intercept, the value of y for which x = 0. The slope is given by the 
change in y over the change in x; i.e., m = Δy / Δx. The slope between the end points would be 
 m  = (19 – 4) / (6 – 1) = 3. 
We could have gotten the same answer using the points closest to 4:  (16 – 11.5) / (5 – 3.5) = 3. 
Knowing the slope, we could set up a similar expression, this time using x = 4 and y unknown: 
 m = 3 = (16 – y) / (5 – 4). 
This gives us 3 ⋅ 1 = 16 – y, or 16 – 3 = y = 13. 
We have interpolated between our known points at x = 3.5 and 5 to determine the value of the function at x = 4. 
Does the answer make sense?  Our x value of 4 is 1/3 of the way from 3.5 to 5; a y value of 13 is also 1/3 of the way 
from 11.5 to 16, so yes, our result makes sense. 
 In this example our function was a line; if our function had been some other shape but only slowly varying, 
such as a large ellipse (to describe, e.g., the orbit of a planet), and our known data points not too far apart, it would 
still be reasonable to approximate the ellipse by a straight line between the two known data points. If the known data 
points are far apart or the function varies rapidly, then using linear interpolation is not justified. We would then need 
to use some more complicated function than a line to join our known points together. If you work with spreadsheet 
software (such as Excel) the software may have the ability to do this interpolation for you, e.g., by adding trendlines 
with various functional forms (lines, polynomials, exponentials, etc.) that will predict the values of a function for 
you. It’s good to know how to do a simple linear interpolation yourself, though. 

r = a ⋅(1− e2 ) / (1+ e ⋅cosθ ).

r = a ⋅(1− e) ⋅(1+ e) / (1+ e) = a ⋅(1− e).

x         y 
1.0       4.0 
2.0       7.0 
3.5     11.5 
5.0     16.0 
6.0     19.0 

Figure 0.14
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Averaging and percentages 
 There are many ways of calculating an average, or mean, of a set of data points or a function. You are 
probably most familiar with the arithmetic mean: 

 . 

The bar over the x indicates that this is the average. 
Example: The average of 1 and 100 would be (1+100)/2 = 50.5. 
If you have a set of data points having varying levels of reliability you might want to use a weighted mean: 

 . 

Example: Suppose we have four data points, 2.1, 4.1, 4.5, 7.2, where we have reason to trust the values of 4.1 and 
4.5 twice as much as we trust the outlying values of 2 and 7. In taking an average we could weight those more 
trustworthy values twice as heavily: 

 . 

If we hadn’t done the weighting we would have calculated an average of 4.48, which in some cases could be enough 
of a difference to matter. 
 Sometimes we want an order of magnitude estimate, in which case it might make more sense to use a 
geometric mean: 

 . 

Example: I teach in a building that is has three floors. How high is it? It’s obviously not 1 meter high and 100 meters 
is too much. How about 10 meters? That might not be enough, but it’s undoubtedly closer than either of my 
bounding guesses of 1 or 100 meters. Why not just take the arithmetic mean of those two guesses? That would be 
50.5 meters, which differs from 1 meter by a factor of 50 and differs from 100 meters by a factor of 2. The 

geometric mean of 1 and 100 is  By definition, that differs from both of the guesses, 1 and 100, by a 
factor of 10. As an order of magnitude estimate between the two guesses of 1 and 100, 10 is closer to the actual 
answer than 50.5.  
 There are some problems where we want the harmonic mean: 

 . 

One example where this is useful is a problem you might have encountered in a physics class. Suppose that you 
travel a distance of 100 km and back; on the outbound leg of the trip the traffic is light and you can travel at 100 km/
hour, but on the return trip you have to slow to 50 km/hour. Over the whole trip the average speed is not 75 km/hour, 
the arithmetic mean of the two speeds (it’s also not the geometic mean of the two speeds, which is 70.7 km/hr). 

Here’s where the harmonic mean comes in:  

In terms of time, the outbound leg of the trip took 1 hour and the return took 2 hours. The total distance, 200 km, 
divided by the total time, 3 hours, gives an average speed of 66.7 km/hr.  
 These three types of average, the arithmetic, geometric, and harmonic means, are collectively known as the 
Pythagorean means because they were studied by the Pythagoreans. 

xAM = 1
n

xi
i=1

n

∑ = x1 + x2 + ...+ xn
n

xWAM =
wixii=1

n∑
wii=1

n∑

x = 2.1+ (2 ⋅4.1)+ (2 ⋅4.5)+ 7.2
6

= 4.42

xGM = xi
i=1

n

∏⎛⎝⎜
⎞
⎠⎟

1/n

= (x1 ⋅ x2 ⋅...⋅ xn )
1/n

1⋅100 = 10.

xHM = n 1
xii=1

n

∑⎛⎝⎜
⎞
⎠⎟

−1

= n
1
x1 +

1
x2 + ...+

1
xn

2 ⋅100 km
100 km

100 km/hr
+ 100 km

50 km/hr

= 2
1

100
+ 1

50

 km/hr = 66.7 km/hr.

CC BY-NC-SA 4.0



Intro Astro - Andrea K Dobson - Chapter 0 August 2024                                                                                                                                      /11 14

 You may also encounter the median of a set of data points. The median is the middle value in the set, 
meaning that half the data points are larger and half smaller. In the set used above, 2.1, 4.1, 4.5, 7.2, the median 
would be (4.1 + 4.5)/2 = 4.3, which is not that different from any of the averages we calculated. But if our data set 
had been 2, 4, 4, 47, then the arithmetic average would be 14.25, very much skewed by the fact that 47 is much 
larger that the other three values. The median would be 4, much more representative of the majority of the data 
points. 

 Calculus alert: Here are two examples involving integrals: 
 Suppose we have a continuous distribution function f(x) which gives the probability that the variable x will 
have a particular value. The mean or the expected value of x is calculated this way: 

 . 

 We might also a function f(x) that is continous over some domain that’s not necessarily infinite. The mean 
of that function over an interval [a,b] is given by 

  

 Percentages are numbers expressed as a fraction of 100. For example, the number 8 is 80% of the number 
10. We get that by taking and tacking on the % symbol.  
 Manipulating percentages can be a bit tricky. For example: 8 is 100% of 8, i.e., of itself; half of 8, or 50% 
of 8, is 4. If we took that number 8 and increased it by 50%, we would have 12. But if we take 12 and decrease it by 
50%, we are now subtracting 6, because that’s half of 12, leaving us with 6 rather than getting back to our starting 
value of 8. Be careful. 
 Often we will want the percentage difference between observational data and theoretical values. For 
example: Suppose that the average of our data measurements in a particular problem is 52 km/sec. Our prediction 
from basic physics for this problem is that we would have expected to measure 50 km/sec. The percentage 
difference between our measurement and the expected value is given by: 

  

  
Some algebra mistakes and how to avoid them 
 If you are rusty using algebra you may forget some of the ways of handling fractions. 
1) Cross-multiplying. Suppose you have the following ratio and want to solve for x: 

  

To solve for x, multiply both sides by x and by 7/3: 

  

On the left-hand side the 7/3 and 3/7 cancel and on the right-hand side the x’s cancel, leaving you with x = (7 ⋅22) / 3 
= 51.3. 

2) Inverting a fraction with a negative exponent in the denominator. Suppose you have an expression that involves 

using the mass of one hydrogen atom in the denominator:  

If you want to get that into the numerator you have to invert both the 1.67 and the 10−27, not just the exponent. You 
should get 6 ⋅1026 kg−1.  

E(x) = xf (x)dx
−∞

+∞

∫

f = 1
b − a

f (x)dx
a

b

∫ .

100 ⋅(8 /10)

100 ⋅ observed-expected
expected

,which in this case = 100 ⋅ 52 − 50
50

= 4%.

3
7
= 22
x
.

x ⋅ 7
3
⋅ 3
7
= x ⋅ 7

3
⋅ 22
x
;

1
1.67 ⋅10−27 kg

.
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3) Adding or subtracting fractions. Here what you need to remember is that you don’t add denominators. Suppose 

you had an expression such as and you want to combine that into one fraction. You evaluate this as follows:  

or 0.095.  

You could have gotten the same result by converting each fraction to a decimal before subtracting:  0.667 – 0.571 = 
0.095. 

More math may take up residence here at some point in the future. 

Sample problems 

1. Express 172 in scientific notation. 

2. Express 2.67·104 in decimal notation. 

3. Express 3.69·10−4 in decimal notation. 

4. Evaluate (2.512)3 and express the result in decimal notation. 

5. Evaluate (32)·(34) and express the result in scientific notation. 

6. Evaluate (3−2)3. 

7. Find the ratio of the area of a circle with a radius = 4 m to that of a circle with a radius = 8 cm. 

8. Find the volume of a sphere with a radius = 7 µm. 

9. Density is mass per unit volume. The density of liquid water under normal ground-based Earth atmospheric 
conditions is ~1 g/cm3. Convert this to kg/m3. 

10. Consider a 3 - 4 - 5 right triangle, i.e., a triangle in which one angle = 90°. Find the values of the other two 
angles in this triangle; express the results in degrees. If you want more practice converting units, express the values 
in radians as well. 

11. Consider an ellipse with a semi-major axis a = 14 cm and an eccentricity e = 0.15. Find the largest and smallest 
possible values of r for this ellipse. 

2
3
− 4
7

2
3
− 4
7
= 2 ⋅7 − 3⋅4

3⋅7
= 14 −12

21
= 2
21
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12. The general expression for a line is y = mx+b. In the example on page 9 we determined that the slope = 3 and 
used that to interpolate to find the value y for x = 4. Extrapolate, i.e., use the same procedure as interpolation but go 
outside the bounds of the given points, to determine the value of the intercept b.  

13. Solve for x: 4 / 9 = 13 / x. 

14. Solve for x: . 

The solutions are on the next page. 

3
4 −

1
5 =

7
x
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1. 1.72·102 
2. 26,700 
3. 0.000369 
4. 15.85 
5. 32+4 = 36  = 7.29·102 or 9 · 81 = 7.29·102 
6. 3(−2·3) = 3−6 = 1.37·10-3 or (1/9)3 = 1.37·10-3 

7. area = πr2 so ratio =  

8. volume =  

9.  

10.  

11.  

and checking, 11.9 + 16.1 = 28 = 2a = entire major axis. 

12. Using the slope, already determined to be 3, and the first data point (1,4) we have ; 

solving this shows that b = 1. 

13.  

14.  

r1
2

r2
2

⎛
⎝⎜

⎞
⎠⎟ =

r1
r2( )2 = 400cm

8cm( )2 = 2.5 ⋅103

4
3πr

3 → 4π (7 ⋅10−6m)3

3
= 1.44 ⋅10−15m3

1g
cm3 ⋅

1kg
1000g

⋅ 100cm
m

⎛
⎝⎜

⎞
⎠⎟
3

= 10
3kg
m3

tan θ1 = 3/4 → θ1 = tan−1 (3/4) = 36.87° or 0.644 rad 
θ2 = 180 − 90 − 36.87 = 53.13° or 0.927 rad 

rmin = a(1− e) = 14cm(1− 0.15) = 11.9cm
rmax = a(1+ e) = 14cm(1+ 0.15) = 16.1cm

y = mx + b→ 4 = 3⋅1+ b

4
9
= 13
x
→ x ⋅4 = 9 ⋅13→ x = 9 ⋅13

4
= 29.25

3
4
− 1

5
= 7
x
→ 15 − 4

20
= 11

20
= 7
x
→ x(11) = 140 → x = 140

11
= 12.73 or

0.75 − 0.2 = 7
x→ x(0.55) = 7 → x = 7

0.55 = 12.73
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