Math 299 Class Period 7 October 14, 2025

Intermediate Value Theorem: If f:[a,b] — R is continuous on [a,b] and v is any number between f(a)

and f(b), then there is a number ¢ in (a, b) such that f(c) = v.

Extreme Value Theorem: If f is continuous on a closed interval [a, b], then f has both a maximum output
and a minimum output on [a, b]. In other words, there exist numbers ¢, d € [a, b] such that f(c) < f(x) < f(d)
for all x € [a, b].

Mean Value Theorem: If f is continuous on [a,b] and differentiable on (a,b), then there exists a point

¢ € (a,b) such that f/(c) = W'

Fundamental Theorem of Calculus: If f is continuous on an interval [a,b] and a function F is defined

by F(z) = [ f(t)dt for all x in [a,b], then F'(z) = f(z) for all z in [a, b].

Fundamental Theorem of Calculus: If f is a continuous function defined on an interval [a,b], then

b
/ f(z)dx = F(b) — F(a), where F is any antiderivative of f.

1. Let f:R — R be twice differentiable on R and suppose that f” > 0 on R. Prove that for each real
number L, the set {x € R: f(x) = L} contains at most two points.

2. Let f:]a,b] — R be continuous on [a,b] and differentiable on (a,b). Suppose that |f'(x)| < 1 for all
x € (a,b). Prove that f has at most one fixed point.

3. Suppose that f and g are continuous on [a,b] and that ff f= f; g. Prove that there exists a point
¢ € [a, b] such that f(c) = g(c).
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5. Let f:R — R be a three times differentiable function such that f has at least six distinct positive zeros.

Consider the function g defined by

g(x) = a® " () = 32* " () + 62 ' (x) — 6f ().
Prove that g has at least three distinct positive zeros.

oo 3 2
6. Evaluate / Se” + 7w
o (@34+2x+1)(a3+ 4z +38)

dx.




Problem: Let f:[0,1] — R be continuous, with fol x(x — 1)2f(x) dz = 0. Prove that there is a real number
c € (0,1) such that [ 2?f(z)de = c [ xf(x)da.

Solution: For each x € [0, 1], let

U(x)z/x(:cs—SQ)f(s)ds and V(x):/mU(t)dt.

0 0

Since the function U is continuous on [0, 1], the function V is both continuous and differentiable on [0, 1]. It

is clear that V(0) = 0 and, using the given properties of the function f, we find that
1
V() = / Ut) dt
0

_/01/(:(t532)f(s)dsdt
:/Ol/sl(ts—sz)f(s)dtds
:/Olf(s)(;tQ—SQt) '

S

ds

By the Mean Value Theorem, there exists ¢ € (0,1) such that V/(¢) = 0. Noting that V’(¢) = U(c) since U

is a continuous function, we obtain

Hence, there is a real number ¢ € (0,1) such that

/ch2f(ac)dx:c/0cxf(x)dx.

This completes the proof. [ ]
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Problem: Evaluate / m dx
0 1 + .’)33

Solution: Using the fact that

for all nonnegative integers n, we obtain

1(1_95)(1“@2 = ! . nx2oo I
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= ioj(—l)k*1 /01(x3k3 — 22" (Inx)% dx
k=1

= B 2 2
:Z(_l)k 1((3k 2)3 _(3k—1)3>

l)k_l (_1)k—1

3k - 2)9 3k—1) RANETAE

(_1)k+1

3k—2P° T BE—1P | (3k)3

k+1 2 k+1

The sum of this series is known as Apéry’s constant.
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Problem: Suppose that f:R — R satisfies f(z) + f(l — f) = arctan z for all x # 0. Find / f(z)dx.
£ 0

Solution: Replacing = with (x — 1)/x two times, we find that

+1(5
155+ (=) m e (525

f(lia;) + f(x) :arctan(1 L

) = arctan x;

fz
1

for all € (0,1). It follows that

1-—-
arctan( x) + arctanx — f(x);

1 T x
1-—2z
2f(z) = arctan T ) + arctan ) + arctan x;
x
1 T
2f(1 — z) = arctan f) + arctan( ) + arctan(l — x);
x -z
3T
2f($)+2f(1—37):7;

for all z € (0,1). The expression for f(z) in terms of arctangent functions shows that f is continuous and

bounded on (0,1) and thus Riemann integrable on [0, 1]. The value of the integral is

/olf(x) dx = ;</01f(x)dx+/olf(1 —2) dfv> - ;/ol(f@) + (1~ a))de = %ﬂ

This completes the solution. [ |



Math 299 Class Period 6 October 7, 2025

1. Suppose that n distinct lines are drawn in the plane in such a way that no two lines are parallel and no
three lines share a common point. Into how many regions do these n lines divide the plane? Of course,

you must provide a proof of your conjecture.

2. A grasshopper starts at the origin in the coordinate plane and makes a sequence of hops. Each hop has
length 5, and after each hop the grasshopper is at a point whose coordinates are both integers; thus,
there are 12 possible locations for the grasshopper after the first hop. What is the smallest number of
hops needed for the grasshopper to reach the point (2021,2021)7

3. Alice and Bob play a game on a board consisting of one row of 2022 consecutive squares. They take
turns placing tiles that cover two adjacent squares, with Alice going first. By rule, a tile must not cover
a square that is already covered by another tile. The game ends when no tile can be placed according to
this rule. Alice’s goal is to maximize the number of uncovered squares when the game ends; Bob’s goal
is to minimize this number. What is the greatest number of uncovered squares that Alice can ensure at

the end of the game, no matter how Bob plays?

4. A class with 2N students took a quiz on which the possible scores were integers from 0 to 10. Each of
these eleven scores occurred at least once and the average score for the quiz was exactly 7.4. Show that
the class can be divided into two groups of N students in such a way that the average score for each

group is exactly 7.4.

5. Find all ordered pairs (a, b) of positive integers for which ab divides a + 6b.



Math 299 Class Period 5 September 30, 2025

The set of integers and its properties are at the root of all mathematical disciplines. The symbols Z

and ZT will be used to represent the set of integers and the set of positive integers, respectively;
Z={...,-3,-2,-1,0,1,2,3,...} and Z' ={1,2,3,4,5,...}.

The set of positive integers has an important property that is quite useful in proving some statements that
depend on the positive integers. This important property is stated below. (Recall that the symbol a € S

means that a is a member of the set S.)

Principle of Mathematical Induction: If S is a set of positive integers that contains 1 and satisfies the
condition “if k€ S, thenk+1¢€ S 7, then S =7ZT.

An equivalent way to state this property is the following.

Principle of Mathematical Induction: For each positive integer n, let P, be a statement that depends
on n. If P is true and the conditional statement “ if Py, then Py1q 7 is valid, then the statement P, is true

for all positive integers n.

The Principle of Mathematical Induction can be compared to a chain reaction. If we know that each
event will set off the next (the condition in quotes) and if the first event occurs (1 € S or P is true ), then
the entire chain reaction will occur. Perhaps you have seen one of those amazing domino exhibits where
thousands of dominoes fall over in interesting patterns. The dominoes must be set up in such a way that

each one knocks over the next, and someone must begin the process by pushing over the first domino.

The key step in an induction proof is proving the “ if Py, then Pyiq 7 statement. We make the
assumption that Py is true for some generic positive integer k, then try to use this fact to prove that Py
is true. It is this part of the proof that may be challenging since the connection between P, and Pyiq may

not be immediately clear.

There is a second form of the PMI (Principle of Mathematical Induction). It is sometimes called strong
induction (abbreviated PSI for the Principle of Strong Induction) or complete induction. It can be stated in

either of the forms below.

If S is a set of positive integers that contains 1 and satisfies the condition “if 1,2,...,k € S, then k+1 € S,
then S = ZT.

For each positive integer n, let P, be a statement that depends on n. If P; is true and the conditional

statement “if P;, P, ..., Py, then Pyyq 7 is valid, then the statement P, is true for all positive integers n.
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Problem: Prove that 12 4+224+32 4 ... 4 n? = nin + )6( n+l) for all positive integers n.

Solution 1: We will use the Principle of Mathematical Induction. Let S be the set of all positive integers
n such that

D(@2n+1
12492 452 4. g2 MOE )6( ntl)

Since 1 = (1-2-3)/6, it follows that 1 € S. Suppose that k € S for some positive integer k. This means that
kE(k+1)(2k+1)

12+22+32+"'+k2:T'

We then have
2 _ E(k+1)(2k+1)

P42 432+ 4k + (k4 1) 5 + (k+1)?
k+1
= T (2K + o+ 6k +6)
k1

(k +2)(2k + 3)

(k+1)((k+1) +1)(2(k+1) + 1)
6 b
which indicates that £k +1 € S. We have thus shown that “if £ € S, then £k + 1 € S”. By the Principle of

Mathematical Induction, it follows that S = Z*. Hence, the equation

n(n+1)2n+1)
6

is valid for all positive integers n. ]

PP422 43+ 4n? =

Solution 2: The given equation is easily verified for n = 1. Suppose that the equation is valid for some
positive integer n. Then

n(n+1)(2n+1)
6

PP422 4340’ + (n+1) = +(n+1)?

+1
:n6 (2n2—|—n+6n—|—6)
_ (n+1)(n+2)(2n + 3)
6 b)

showing that the equation is valid for n+1 as well. By the Principle of Mathematical Induction, the equation

nn+1)(2n+1)
6

is valid for all positive integers n. [ ]

1249224324 ... 42 =

Problem: For each positive integer n, the number 9™ — 8n — 1 is a multiple of 64.

Solution: We will use the Principle of Mathematical Induction. Since 0 is a multiple of 64, the statement
is valid when n = 1. Let k be a positive integer and suppose that 9¥ — 8k — 1 is a multiple of 64. This means
that there exists an integer j such that 645 = 9¥ — 8k — 1. We then have

9FFl _8(k+1)—1=9""1 -8k —9=9(9" — 8k — 1) + 64k
= 9645 + 64k = 64(95 + k),

showing that 9¥*! — 8(k + 1) — 1 is a multiple of 64. The result now follows by the PMI. ]

7



Problem: Suppose that a; = 1, as = —1/2, and a,1+1 = (a, + an—1)/2 for each positive integer n > 1.

Then a, = (—1/2)"! for each positive integer n.

Solution: It is easy to see that the statement is true for n = 1 and n = 2. (We need to check both
of these cases, since these numbers do not fit the general pattern for the generation of terms.) Suppose
that a, = (—=1/2)""! for all the integers 1,2,...,k for some positive integer k& > 2. We must show that
apy1 = (—1/2)F. Using the assumption that all the terms up to k satisfy the pattern (all we really need to
know is that the pattern is valid for the terms k and k — 1),

=g tosad = ()7 D7) G G- ()

Hence, the equation of interest is valid for &k + 1. By the Principle of Strong Mathematical Induction, the
formula a,, = (—1/2)""! is valid for all positive integers n. [ |

How many pairs of rabbits can be bred in one year from one pair? A certain person places one pair of
rabbits in a certain place surrounded on all sides by a wall. We want to know how many pairs can be bred
from that pair in one year, assuming it is their nature that each month they give birth to another pair, and
in the second month, each new pair can also breed.

The Fibonacci numbers are defined by f1 =1, fo =1, and f,11 = f + fn_1 for all n > 1.

The Lucas numbers are defined by ¢4 =1, ¢, =3, and ¢,,41 = ¥, + {1 for all n > 1.

Let a and 3 < a be the two roots of 22 = x + 1. Note that a = ¢ and 3 = —1/¢, where ¢ is the golden
mean, and that a + =1, a — 8 = /5, and aff = —1.

Using strong induction, it is easy to verify that f, = ot and £, = a™ + " for each positive integer n.

V5

The following table lists the first 20 Fibonacci and Lucas numbers. We also use fy = 0 and ¢y = 2.

n fn ln

1 1 1

2 1 3

3 2 4

4 3 7

5 5 11

6 8 18

7 13 29

8 21 47

9 34 76
10 %) 123
11 89 199
12 144 322
13 233 521
14 377 843
15 610 1364
16 987 2207
17 1597 3571
18 2584 5778
19 4181 9349
20 6765 15127



n?(n+ 1)?

. Prove that 12 +23+33+...4+n3= 1

for each positive integer n.

Prove that —— 4+ — 4+ — + + = i for each itive intege
. Pr = r 1tive 1n r n.
(¢ a - - 3. n(n ) n or each pos ger n

. Prove that for each positive integer n, the integer 32"+1 4 27*2 is divisible by 7.
e . L1 1 1 1 1. .
. Prove that for each positive integer n, the inequality 0 + B + 30 +ot = <2 — — is valid.
. Let a; =1 and a,41 = 3 — (1/ay,) for each integer n > 1. Prove that 1 < a, <3 foralln € Z™.
. Prove that f1 + fo+ -+ + fn = fnye — 1 for each positive integer n.
. Prove that fZ + f2 + -+ f2 = f.fas1 for each positive integer n.

. Prove that f1 + f3+ f5+ - + fon_1 = fon for each positive integer n.

. Let a = (1 + \/5)/2 and 8 = (1 - \/5)/2; the numbers « and (8 are the solutions to the equation
2?2 = x + 1. Prove that f, = (a" — ﬂ")/\/g and ¢, = a™ + ™ for each positive integer n.



Math 299 Class Period 4 September 23, 2025

We are going to work with some simple properties of complex numbers. A complex number is a number
of the form a + bi, where a and b are real numbers and i = /—1. Although the number i seems strange (the

i stands for imaginary), we will treat it like it appears, that is, we use i> = —1. For instance, we have

(1+2i)(3 —5i) =3 — 5i + 6i — 10i> = 13 +i.

We often use letters such as z and w to denote complex numbers and we use C to represent the set of all
complex numbers. Note that R C C by choosing b = 0. For a given a complex number z = a + bi, we let
Z = a — bi (this is called the conjugate of z) and |z| = va? + b2. Note that |z|?> = 2 Z.

Since a and b are real numbers, the complex number a + bi is related to the ordered pair (a,b) of real
numbers. We are thus able to represent complex numbers graphically using the plane R? as shown below.
The z-axis is called the real axis and the y-axis is called the imaginary axis; we thus have a geometric picture

for the complex plane C.

Y

2

1

b z=a+ b

|2
T
1 a 2

—-b e Z—a—UW

Be sure that you see the geometric connections between z, Z, and |z|.

1. For complex numbers w and z, prove that wz = wz.

44
2. Write the numbers (2 — 3i)(5 — 4¢) and 1—:_7,1 in a + bi form.
i

A well-known theorem involving complex numbers is the Fundamental Theorem of Algebra. It states

that every polynomial of degree n has n roots in the complex plane.

3. Find the roots of the polynomial P(z) = 2% + 4z + 9.
4. Find the roots of the polynomial Q(z) = 23 + 32% + 52 + 3.

Using Maclaurin series or properties of differential equations, it can be shown that e = cosx + isin x.

It then follows that ] _ ) )
e e it _ p—iT
cosyr = ————— and sihg = ————
2 21

5. What are the values of '™, €'™/2 and e"?7?
6. Find seven different complex numbers z that satisfy 27 = —1.

7. Prove that 2 cos(m/7) is a root of the polynomial 2% — 2% — 22 + 1.

10



n—1
Theorem: The equation Z tan?(km/n) = n(n — 1) is valid for each odd integer n > 1.
k=1

Proof: Let n > 1 be an odd integer. We first note that

1 eikﬂ/n _ e—ikﬂ/n 1 2
tan(km/n) = ;(m) - 2(1 - m)
and thus
4 4

tan?(kr/n) = —1 +

eizkm/n 4 1 (6i2kﬂ'/n + 1)2

for all 1 < k < n. For these values of k, let x; = (ei%”/” + 1)71. Since (recall that n is odd)
= 71 1 1 " 1 )" = —af
Tk = ei2km/n +1 = (;k - ) - And (.%'k - ) = — Tk,

we see that the set {z : 1 < k < n} contains the n distinct roots of the polynomial

(xil)n+zn7]‘ n . n n—k k _.n n n1 Tl(’n*l) n—2
5 =5\ +§ ) 2"P(=DY ) = 5% + 1 T +

It then follows that

n n—1

Sa=
k=1 * 2’ k=1 2 ’
. ) and thus .

2 _ @)2_2.M:2_1. St ol
D (2 4 2 4’ PR R (
k=1 k=1

Putting these results together, we obtain
n—1 n—1 n—1 n—1 n—1
Ztanz(kﬂr/n) = Z(—l +day, — day) = —Z 1 —|—4Zajk —42%%
k=1 k=1 k=1 k=1 k=1

=-(m-1)+2n—-1)+(n-1)2=n(n-1),

as desired. The polynomial needed for this proof is quite simple.

8. Use the properties of the numbers x; and simple trigonometric identities to prove that

n—1 n—1
Z tan(kr/n) =0  and Z sec?(km/n) =n? — 1
k=1 k=1

for all odd positive integers n > 3.

11
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Math 299 Class Period 3 September 16, 2025

To find the derivative of the sine function, it is necessary to return to the definition of the derivative and
determine some way of computing the limit of the difference quotient. In this case, some properties of the
trigonometric functions and a few trigonometric identities provide the relevant information. The definition

of the derivative yields

. . sin(z+6) —sinzx . sinzcosf +sinfcosx —sinzx
— sinz = lim = lim
dx 6—0 0 6—0 6
. ( sin 0 1-— cos@)
= lim(cosz — — ).
6—0 0 0

To determine the limits of the quotients sin6/6 and (1 —cos#)/60 as § — 0, assume that 6 is given in radians

and consider the portion of the unit circle that lies in the first quadrant:

Q
A (1,0)
B (0,1) B P area of triangle OCP is % sin 6 cos 0
C (cos,0) area of sector OAP is £ 6
P (cos0,sin0) ! area of triangle OAQ is 1 tan 6
Q (1,tan0) f
0 c A

From the figure, it is clear that the area of triangle OCP is less than the area of sector OAP which in turn
is less than the area of triangle O AQ. Determining these areas in terms of  and rearranging gives

1

sinfcosf < 0 <tanf = cosbl < — .
sinf  cos6

Although the figure indicates that € is positive, this equation is valid for any small nonzero value of  because

cos(—0) = cos# and sin(—6)/(—0) = sin /6. Since éirr%) cosf = 1, the squeeze law gives
—

. . . sinf
él_r}r%) i 1 or equivalently 51_1)% =1.
Using this limit and some algebra yields
. 1—cosf . 1 —cos?6 : sin 0 sin 0 0-1=0
im——=lim———=lim|{——-—— | =0-1=0.
-0 0 60 0(1 +cosf) 6—0\1+cosf 0

Given the values of these limits, the derivative of the function sinz is cosz. Graphing y = sinx, then using
the graph to sketch its derivative makes this result seem very plausible. Using the above information and

other facts about derivatives, we find that

— sinx = cosx — tanz = sec’ z —secx = secrtanx
dx dx dx

d . d 9 d

— cosx = —sinx —cotxr = —cscx —cscx = —cscxcotx
dx dx dx

1. Verify the derivative for cosx two different ways; one using the definition of the derivative and another

using the chain rule.

2. Use simple facts to verify the derivative formulas for the other four trigonometric functions.

12



3. Find and simplify the derivative of f(x) = cos*(z?).

4. Find all values of z in [0, 27] for which ¢'(z) = 0 given that g(z) = ST
2+sinx
5. Evaluate each of the following limits, where r is a nonzero real number.
sin 26 tanrf tanred
1 b) li li
a) 630 sin 16 ) 650 0 ) 650 sin 70

6. Show graphically that there is a point on the graph of y = sec x for which the tangent line goes through

the origin. If the z-coordinate of such a point is a, what equation must a satisfy?

The derivatives of the inverse trigonometric functions follow fairly easily from the derivatives of the
trigonometric functions and some trigonometric identities. Assuming that arcsin x is differentiable (this fact
does require proof, but we will not concern ourselves with it), its derivative can be found using an identity

and the chain rule:
1
V1—a2

sin(arcsinz) =z = o sin(arcsinz) =1 = cos(arcsin x)d— arcsine =1 = -, aresinz =
x x x

As a simple example, note that

1 T 2x
(2
— arcsin(z/2) = ————— - = = .
dr 1—(22/2)° V-t /4 VA-at
The derivatives of the six inverse trigonometric functions are given below.
. 1 d ; 1 d 1
— arcsing = —— — arctanx = — arcsecx = ————
dx V1 — 22 dx 1+ 22 dx |lz|vr2 — 1
1 d 1 d 1

— arccos & = ———— — arccotz = — arcescx =

dx V1 — 22 dx 1442 dx _|x|~/x2—1
7. Verify the derivative formulas for the other five inverse trigonometric functions.

8. Find and simplify the derivative of f(z) = x arccosz — /1 — a2.

9. Find the value of z that will maximize the angle 6.

AN

xT

10. Find the maximum and minimum outputs of the function h(z) = sin? 2 4 cosz on the interval [0, 7].

11. A line of length 60 is split into equal thirds. The right and left thirds are then each bent upward through
the same angle 0 to form a (topless) trapezoid. Find the value of § that will maximize the area of the

trapezoid.

12. Find the value of z € (0, 00) that will maximize the angle 6.

12

13



Math 299 Class Period 2 September 9, 2025

We assume that the reader is familiar with angles and angle measurement, both in degrees and radians.
As a quick reminder, if x is a number between 0 and 27, then the angle = radians is the angle cut off in a

circle of radius r by an arc of length xr (see the figure).

360° = 27 radians
1° = % radians
@ 1 radian
T

If x > 2m, then the angle is determined by “taking laps” in a counterclockwise direction. If z < 0, then the

angle is determined by going in a clockwise direction.

The word “trigonometry” refers to the measurement of triangles. For acute angles, the trigonometric

functions can be defined using the sides of a right triangle as in the figure below.

. opposite hypotenuse
sinf = — 7" csc) = ———
hypotenuse opposite
] hypotenuse 0 — _adjacent § — hypotenuse
opposite cos hypotenuse see adjacent
it .
tanf = 701)?081 © cotf = 7adjac§nt
0 adjacent opposite

adjacent

However, in calculus, the trigonometric functions need to be defined for all real numbers. Given a real
number 6, interpret 6 as the radian measure of an angle with vertex at the origin and initial side the positive
z-axis. The terminal side of this angle intersects the unit circle in a unique point. The x-coordinate of this
point is defined to be cosf and the y-coordinate is defined to be sinf. The other trigonometric functions

are then defined in terms of sinf and cos 6.

L2 (cos0,sinb)

tanf = sin 0 sectﬁ?—L
0 " cosf " cosf
|
L 12 ' t@*cose cscl = L
2 2 0 " siné " siné
z°+y =

A number of relationships are clear from the definitions of the trigonometric functions. These include the

fact that the trigonometric functions repeat every 2w units as well as the following identities:

sin? @ + cos® 0 = 1 sin(—0) = —sin 6 sin(mr — 6) = sin 6 sin(m + 6) = —sin@
tan® 6 4+ 1 = sec” 0 cos(—0) = cosé cos(m —6) = —cos @ cos(m 4+ 6) = —cos @
14+ cot?0 = csc? 6 tan(—6) = —tan 6 tan(m — 0) = —tan tan(m 4 0) = tan6

14



Another set of useful identities that follow from the symmetry of the circle are

. ™ ™ e
cosG—sm(EfG), cotO—tan(ng), cscG—sec(ifG').

The prefix “co” in front of three of the trigonometric functions refers to the complement of an angle; for
instance, the cosine of z is the sine of the complement of x.

In calculus, the angle will most often be denoted by x, where it is assumed that z is in radians. The
graphs of the functions sinz, cosz, tanx, and cot z are given below. Since the graphs are periodic (that is,

they repeat every 27 units) only a portion of each graph is given.
Yy Yy

Y =CoST

1K 4

ST | 1 | s
i 9l iy:tanmi 9l iy:cotxi
o/ | i : s
| | L oo | s
—71:'/2 7r:/2 3711/2 7? 2:‘7r
i 1+ | | —1+ : !
2 i —2f a e
[ sb | : s

1. Sketch (using your own knowledge) the graphs for sec z and cscz.

The exact values of the trigonometric functions can be determined easily for some angles. These values
are recorded in the following table and should be used when they appear in problems.
0 0 /6 /4 /3 /2
sin 6 0 1/2 V2/2 V3/2
cos @ 1 V3/2 V2/2 1/2 0
tan 0 0 V3/3 1 V3 %
2. Use simple properties of right triangles to verify the above values.
3. Find the exact value of all the trigonometric functions for the angles (in radians) 27/3 and 77 /6.

There are many other identities satisfied by the trigonometric functions. Some of these are listed below.
If possible, you should commit these identities to memory. At the very least, it is important to know that

such formulas exist and to be able to use them when necessary.

.2 1 — cos2x
sin(z 4+ y) = sinzcosy + siny cos sin 2z = 2sinx cosx ST =
cos(z +y) =coszcosy — sinzsiny cos 2z = cos> ¢ — sin? x cos?z — 14 cos2z

tanx + tany 2tan 2
tan(z +y) = ———MMX— _ _stanx _
( Y) 1—tanztany fan 2z 1—tan?z tan®z = 1 —cos2z
1+ cos2zx

4. Verify the identities listed above; the law of cosines mentioned later is needed for the second one.

15



5. Use the figures below to prove the Pythagorean Theorem three different ways.

c
F
A= L B
D L
b a
a
a
b
b
a )
B
CcC—X
a
X
o
b
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For triangles that do not have a right angle, the following relationships between the sides and angles of

a triangle are sometimes useful.

law of cosines law of sines

S

¢ & =a® 4> — 2abcosy ma_ sin 8 = Smy
a b c

6. Prove the law of cosines and the law of sines.

Finally, we present the definitions for the six inverse trigonometric functions. The number arcsin(%)
represents the angle or arc (in radians) for which the value of the sine function is % Since there are many
angles for which this is true, we need to limit the range of potential answers in order to define a function.

One way to proceed is the following. (Note the range of each function.)

i. For each real number x € [—1,1], arcsinz is the unique real number taken from the interval [—7/2, 7/2]

that satisfies sin(arcsinz) = x.

. 7T .
ii. For each real number z € [—1, 1], arccosx = 5 —arcsing.

iii. For each real number x, arctanz = arcsm(Qil).
e+

. 7r
iv. For each real number x, arccot x = 5~ arctan x.
v. For each real number x that satisfies || > 1, arccscz = arcsin(1/x).

. . s
vi. For each real number x that satisfies || > 1, arcsecz = 5 arcesc .

7. Sketch the graphs for the six inverse trigonometric functions.

8. Simplify the expressions sec(arctan(2z)) and cos(2 arcsin z).

9. Find the exact value of all the trigonometric functions given that sinz = 2/3 and 0 < & < 7/2.
10. Find the exact value of all the trigonometric functions given that tanz = —4 and 7/2 < x < 7.
11. Find all of the values of z in the interval [—2m, 47| that satisfy cosz = 1/2.

12. Find three solutions to the equation 1+ tanz = 0.

13. Without a calculator, find the exact value of each of the following.
a) arcsin(1/v/2) b) arcsin(—1/2) c) arccos(—1/2)
d) arctan(1/+/3) e) arcsec(—v/2) f) arcesc(—2/v/3)
14. Simplify each of the following expressions. Indicate the values of = for which each is defined.

a) tan(arcsin x) b) sin(arctan x) c) cos(2arcsin )
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Math 299 Class Period 1 September 2, 2025

Students will spend about 30 minutes working alone (and without access to notes or electronic devices)
on the problems below. You can work on whichever problems strike your interest and/or require knowledge
that you remember from previous math classes. We will then discuss these problems as a class and consider

various strategies for solving them.

1. Find the distance from the line 4x + 3y = 24 to the origin. Also, find the distance from this line to the
point (10, 3).

2. There are two points on the circle 72 +y? = 1 for which the tangent line passes through the point (7, 1).
Find the (z,y) coordinates of both these points.

3. Find the minimum distance from a point on the parabola y = 22 to the point (0,2).

4. Find the ordered pair (s,t) that satisfies the equation 22 — 2y + y? = 1 and has the largest possible

value for t.

1 2 .49
5. Evaluate lim (n+D+(n+2)+0m+3)+ + n.

n—00 n2

6. Evaluate the following three limits:

lim In(1 — z)sinz lim In(1 —z) —sinx lim In(1+z) — sinz

z—0+ 1—cos?2z ’ z—0+ 1—cos?z ' z—0+ 1 —cos?x
One of these limits appears in the movie Mean Girls.

7. Let R be the region under the curve y = 4/x and above the z-axis on the interval [1,4]. Find (a) a

vertical line and (b) a horizontal line that divides the region R into two pieces of equal area.
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