Name: due October 7

Math 299 Assignment 5 Fall 2025

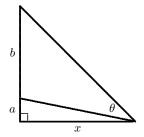
- 1. Prove that $\sum_{i=1}^{n} (-1)^{i+1} i^2 = \frac{1}{2} (-1)^{n+1} n(n+1)$ for each positive integer n.
- 2. Prove that $f_1f_2 + f_2f_3 + f_3f_4 + \cdots + f_{2n-1}f_{2n} = f_{2n}^2$ for each positive integer n.
- 3. Prove that $f_{n+1}f_{n-1} = f_n^2 + (-1)^n$ for each positive integer n > 1.
- 4. Find (by collecting data) and prove (using induction) a formula for $f_1 + f_4 + f_7 + \cdots + f_{3n-2}$ that is valid for all positive integers n.
- 5. Let $a_1 = 1$ and $a_{n+1} = 3 (1/a_n)$ for each integer $n \ge 1$. Find (by collecting data) and prove (using induction) a formula for a_n involving Fibonacci numbers that is valid for all positive integers n.

Math 299 Assignment 4 Fall 2025

- 1. Prove that $2\cos(3\pi/7)$ is a root of the polynomial $z^3 z^2 2z + 1$.
- 2. Prove that $\sum_{k=1}^{n-1} \cot^2(k\pi/n) = \frac{(n-1)(n-2)}{3}$ for all integers $n \ge 2$.
- 3. Use the result of the previous problem to prove that $\sum_{k=1}^{n-1} \csc^2(k\pi/n) = \frac{n^2-1}{3}$ for all $n \ge 2$.
- 4. Prove that the equation $\sum_{k=1}^{n-1} \frac{2^m}{\left(1 + i\cot(k\pi/n)\right)^m} = n \text{ is valid for all positive integers } n \ge m+1.$
- 5. Prove that $\sum_{k=0}^{n} \sin^2(k\pi/n) = \frac{n}{2}$ for all integers $n \ge 2$.
- 6. Use the result of the previous problem to find a formula for $\sum_{k=0}^{n} \cos^2(k\pi/n)$ for all $n \ge 2$.
- 7. Prove that $\sum_{k=0}^{n} \sin^4(k\pi/n) = \frac{3n}{8}$ for all integers $n \ge 2$.

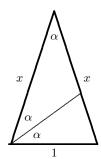
Math 299 Assignment 3 Fall 2025

- 1. Prove that the area of the square on the side of a regular pentagon inscribed in a circle is equal to the sum of the areas of the squares on the sides of the regular hexagon and the regular decagon inscribed in the same circle.
- 2. Prove that $\csc(\pi/10) \csc(3\pi/10) = 2$.
- 3. For a positive integer n, let $f_n(x) = \cos x \cos(2x) \cos(3x) \cdots \cos(nx)$. Find the smallest n such that $|f_n''(0)| > 2023$.
- 4. For the figure below, find the value of $x \in (0, \infty)$ that will maximize θ . Treat a and b as constants.



Math 299 Assignment 2 Fall 2025

- 1. Referring to the last figure in problem 5 from Class Period 2, use similar triangles to prove the Pythagorean Theorem.
- 2. Prove the law of sines (see problem 6 from Class Period 2).
- 3. Find and prove identities for sin(3x) and cos(3x).
- 4. Find the values of $\sin(\pi/5)$ and $\cos(\pi/5)$. One option is to note that $\sin(3\pi/5) = \sin(2\pi/5)$ and the figure below provides another option (using $\alpha = \pi/5$).



Math 299 Assignment 1 Fall 2025

- 1. Find the area of the region in the first quadrant bounded by the graph of $y = x^3$, the x-axis, and the tangent line to $y = x^3$ at the point (a, a^3) , where a is a positive constant.
- 2. Evaluate $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{1}{n+i}$.
- 3. Find the minimum distance from a point on the curve $y = 4/\sqrt{x}$ to the origin.
- 4. Let a and b be positive constants. Find an equation for the line that passes through the point (a, b) and cuts off the least area in the first quadrant.