
Exercise 4.7.10: Let B be the collection of all sequences of 0’s and 1’s for which the number of 1’s is finite.

In other words,

B = {{bi} : bi ∈ {0, 1} for all i and there exists n ∈ Z+ such that bi = 0 for all i ≥ n}.

One example of an element of the set B is the sequence

1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . .

Prove that the set B is countably infinite.

Solution: For each nonnegative integer n, let Bn = {{bi} ∈ B : bi = 0 for all i > n}. Since the set Bn

contains 2n elements, each Bn is a finite set and thus countable. Furthermore, by the definition of the set

B, we see that B =
∞⋃

n=0
Bn. It follows that B is a countable set. Since the set B is clearly infinite (the

‘standard’ basis {en : n ∈ Z+} would give an infinite subset of B), we conclude that B is countably infinite.

Consider the function f :B → Z+ ∪ {0} defined by f({bi}) =
∞∑
i=1

bi2
i−1. (Given the definition of the set

B, the sum is actually a finite sum.) To prove that f is injective, suppose {ai} and {bi} are two different

elements of B. Choose a positive integer N such that aN 6= bN and ai = bi for all i > N . Without loss of

generality, we may assume that aN = 1 and bN = 0. We then have

f({ai})− f({bi}) =

∞∑
i=1

(ai − bi)2
i−1 =

N∑
i=1

(ai − bi)2
i−1 ≥ 2N−1 −

N−1∑
i=1

2i−1 = 2N−1 −
(
2N−1 − 1

)
= 1.

This shows that f({ai}) 6= f({bi}) and we conclude that f is injective. The set f(B) is countable since it is

a subset of Z+ ∪ {0}. Since B is in a one-to-one correspondence with f(B), the set B is countably infinite.

If desired, we can use strong induction to show that f is a surjection. It is easy to verify that the

integers 0, 1, 2, . . . , 8 are in the range of f . Suppose that all of the integers 0, 1, 2, . . . , n are in the range of

f for some positive integer n ≥ 8. Choose a positive integer k such that 2k−1 < n + 1 ≤ 2k. If n + 1 = 2k,

then n + 1 is the image of the sequence composed of all 0’s with a 1 in the k + 1 position. Suppose that

2k−1 < n + 1 < 2k and consider the integer m = n + 1 − 2k−1. Since 0 ≤ m ≤ n, the induction hypothesis

tells us that m is in the range of f . Let m = f({bi}) and, since m < 2k−1, note that bi = 0 for all i ≥ k.

Consider the sequence {ci}, where ci = bi for all i 6= k and ck = 1. Then {ci} is in the set B and we have

f({ci}) = f({bi}) + 2k−1 = m + 2k−1 = n + 1.

This shows that n + 1 is in the range of f . By the Principle of Strong Induction, it follows that the range

of f is Z+, that is, the function f is surjective.

Let {pi} be the sequence of primes and define a function g:B → Z+ by g({bi}) =
∞∏
i=1

pbii . (As above, the

product only involves a finite number of terms that are greater than 1.) By the Fundamental Theorem of

Arithmetic, it is clear that g is an injective function. (The function g in this case is certainly not surjective

since no prime appears to a power larger than 1; the range of g is the collection of all square-free positive

integers.) As above, it follows that B is countably infinite.
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Exercise 4.8.2: Let A be the collection of all sequences of 0’s and 1’s. In other words,

A = {{ai} : ai ∈ {0, 1} for all i}.

One simple example of an element of the set A is the sequence

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . .

a) Use Cantor’s diagonal process to prove that the set A is uncountable.

b) Prove that the collection of all subsets of positive integers is uncountable by establishing a one-to-one

correspondence between P(Z+) and the set A.

c) Explain and prove the statement 2ℵ0 = c. (Compare with Exercise 7 below.)

Solution: To prove part (a), suppose that f :Z+ → A is an injection. Denote f(n) by {xn,i} for each

n ∈ Z+. Consider the sequence {ai} defined by ai = 0 if xi,i = 1 and ai = 1 if xi,i = 0. Then {ai} ∈ A.

Since the sequences {xn,i} and {ai} have different numbers in the nth position, we see that f(n) 6= {ai} for

all n ∈ Z+. This means that {ai} is not in the range of f . It follows that f is not surjective. Since every

injection f :Z+ → A fails to be a surjection, there is no bijection between Z+ and A. Hence, the set A is

uncountable.

Consider the function f :A → P(Z+) defined by f({ai}) = {i ∈ Z+ : ai = 1}. Suppose that {ai} and

{bi} are two distinct elements of A. Since the two sequences are different, there exists an index n such that

an 6= bn. Without loss of generality, we may assume that an = 1 and bn = 0. It follows that n ∈ f({ai})
but n /∈ f({bi}). This shows that f({ai}) 6= f({bi}). Hence, the function f is injective. Now suppose that

S is a set of positive integers. Define a sequence {ci} by ci = 1 if i ∈ S and ci = 0 if i /∈ S. It is then clear

that f({ci}) = S. Hence, the function f is surjective. We have thus established a one-to-one correspondence

between P(Z+) and the set A. Using the result in part (a), we find that the set P(Z+) is uncountable.

Using binary expansions, we can establish a one-to-one correspondence between A and the interval [0, 1].

(Some care is required here since some real numbers have two binary expansions, one ending with all 0’s and

one ending with all 1’s.) Hence, there is a one-to-one correspondence between P(Z+) and the interval [0, 1].

Since the cardinality of P(Z+) is 2ℵ0 and the cardinality of [0, 1] is c, we find that 2ℵ0 = c.
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