Properties of the curve $x^{y}=y^{x}$

Russ Gordon
Whitman College

June 28, 2019

Find solutions to the equation $x^{y}=y^{x}$.

Find solutions to the equation $x^{y}=y^{x}$.
Trivial solutions occur when $x=y$.

Find solutions to the equation $x^{y}=y^{x}$.
Trivial solutions occur when $x=y$.
One simple nontrivial solution is $2^{4}=4^{2}$.

Find solutions to the equation $x^{y}=y^{x}$.
Trivial solutions occur when $x=y$.
One simple nontrivial solution is $2^{4}=4^{2}$.

We can seek solutions in the set of integers, the set of rational numbers, the set of real numbers, or the set of complex numbers.

Find solutions to the equation $x^{y}=y^{x}$.
Trivial solutions occur when $x=y$.
One simple nontrivial solution is $2^{4}=4^{2}$.

We can seek solutions in the set of integers, the set of rational numbers, the set of real numbers, or the set of complex numbers.

We restrict ourselves to the set of positive real numbers.

Suppose x and y satisfy $x^{y}=y^{x}$, where $x \neq y$ unless $x=e=y$.

Suppose x and y satisfy $x^{y}=y^{x}$, where $x \neq y$ unless $x=e=y$.

Denote the value of y corresponding to x by $E(x)$.

Suppose x and y satisfy $x^{y}=y^{x}$, where $x \neq y$ unless $x=e=y$.

Denote the value of y corresponding to x by $E(x)$.

It follows that $\frac{\ln x}{x}=\frac{\ln E(x)}{E(x)}$.

Suppose x and y satisfy $x^{y}=y^{x}$, where $x \neq y$ unless $x=e=y$.

Denote the value of y corresponding to x by $E(x)$.

It follows that $\frac{\ln x}{x}=\frac{\ln E(x)}{E(x)}$.

Hence, solutions to $x^{y}=y^{x}$ correspond to horizontal chords on the graph of $\beta(x)=\frac{\ln x}{x}$.

It is clear that $\frac{\ln u}{u}=\frac{\ln E(u)}{E(u)}, \frac{\ln v}{v}=\frac{\ln E(v)}{E(v)}$, and $E(e)=e$.

Define t by $t=y / x$.

Define t by $t=y / x$.

$$
\begin{aligned}
x^{y}=y^{x} & \Leftrightarrow t x \ln x=x \ln (t x) \\
& \Leftrightarrow t \ln x=\ln t+\ln x \\
& \Leftrightarrow \ln x=\frac{\ln t}{t-1}
\end{aligned}
$$

Define t by $t=y / x$.

$$
\begin{aligned}
x^{y}=y^{x} & \Leftrightarrow t x \ln x=x \ln (t x) \\
& \Leftrightarrow t \ln x=\ln t+\ln x \\
& \Leftrightarrow \ln x=\frac{\ln t}{t-1}
\end{aligned}
$$

Parametric equations for the curve $y=E(x)$ are thus

$$
x(t)=t^{1 /(t-1)}, \quad y(t)=t^{t /(t-1)}
$$

as t runs from 0 to ∞.

Define t by $t=y / x$.

$$
\begin{aligned}
x^{y}=y^{x} & \Leftrightarrow t x \ln x=x \ln (t x) \\
& \Leftrightarrow t \ln x=\ln t+\ln x \\
& \Leftrightarrow \ln x=\frac{\ln t}{t-1}
\end{aligned}
$$

Parametric equations for the curve $y=E(x)$ are thus

$$
x(t)=t^{1 /(t-1)}, \quad y(t)=t^{t /(t-1)}
$$

as t runs from 0 to ∞.
$t=3$ yields $x=\sqrt{3}$ and $y=3 \sqrt{3}: \quad \sqrt{3}^{3 \sqrt{3}}=(3 \sqrt{3})^{\sqrt{3}}$

Define t by $t=y / x$.

$$
\begin{aligned}
x^{y}=y^{x} & \Leftrightarrow t x \ln x=x \ln (t x) \\
& \Leftrightarrow t \ln x=\ln t+\ln x \\
& \Leftrightarrow \ln x=\frac{\ln t}{t-1}
\end{aligned}
$$

Parametric equations for the curve $y=E(x)$ are thus

$$
x(t)=t^{1 /(t-1)}, \quad y(t)=t^{t /(t-1)}
$$

as t runs from 0 to ∞.
$t=3$ yields $x=\sqrt{3}$ and $y=3 \sqrt{3}: \quad \sqrt{3}^{3 \sqrt{3}}=(3 \sqrt{3})^{\sqrt{3}}$
Note that $y(t)=t x(t)$ and $y(t)=(x(t))^{t}$.

With $t=1+\frac{1}{s}$, where $s>0$, the parametric equations

$$
x(t)=t^{1 /(t-1)}, \quad y(t)=t^{t /(t-1)}
$$

become

$$
x(s)=\left(1+\frac{1}{s}\right)^{s}, \quad y(s)=\left(1+\frac{1}{s}\right)^{s+1}
$$

With $t=1+\frac{1}{s}$, where $s>0$, the parametric equations

$$
x(t)=t^{1 /(t-1)}, \quad y(t)=t^{t /(t-1)}
$$

become

$$
x(s)=\left(1+\frac{1}{s}\right)^{s}, \quad y(s)=\left(1+\frac{1}{s}\right)^{s+1}
$$

You may recognize a familiar limit here. These equations easily generate rational numbers that satisfy $x^{y}=y^{x}$.

With $t=1+\frac{1}{s}$, where $s>0$, the parametric equations

$$
x(t)=t^{1 /(t-1)}, \quad y(t)=t^{t /(t-1)}
$$

become

$$
x(s)=\left(1+\frac{1}{s}\right)^{s}, \quad y(s)=\left(1+\frac{1}{s}\right)^{s+1}
$$

You may recognize a familiar limit here. These equations easily generate rational numbers that satisfy $x^{y}=y^{x}$.
$s=1,2,3$ gives $(2,4), \quad\left(\frac{9}{4}, \frac{27}{8}\right), \quad\left(\frac{64}{27}, \frac{256}{81}\right)$.

With $t=1+\frac{1}{s}$, where $s>0$, the parametric equations

$$
x(t)=t^{1 /(t-1)}, \quad y(t)=t^{t /(t-1)}
$$

become

$$
x(s)=\left(1+\frac{1}{s}\right)^{s}, \quad y(s)=\left(1+\frac{1}{s}\right)^{s+1}
$$

You may recognize a familiar limit here. These equations easily generate rational numbers that satisfy $x^{y}=y^{x}$.
$s=1,2,3$ gives $(2,4), \quad\left(\frac{9}{4}, \frac{27}{8}\right), \quad\left(\frac{64}{27}, \frac{256}{81}\right)$.
Rational solutions $x<y$ if and only if s is a positive integer.

We now return to the equation

$$
\ln x=\frac{\ln t}{t-1} \equiv f(t) \quad(f(1)=1)
$$

We now return to the equation

$$
\ln x=\frac{\ln t}{t-1} \equiv f(t) \quad(f(1)=1)
$$

$f:(0, \infty) \rightarrow(0, \infty)$ is a strictly decreasing, continuous function.

We now return to the equation

$$
\ln x=\frac{\ln t}{t-1} \equiv f(t) \quad(f(1)=1)
$$

$f:(0, \infty) \rightarrow(0, \infty)$ is a strictly decreasing, continuous function.
Let $g:(0, \infty) \rightarrow(0, \infty)$ be the inverse of f.

We now return to the equation

$$
\ln x=\frac{\ln t}{t-1} \equiv f(t) \quad(f(1)=1)
$$

$f:(0, \infty) \rightarrow(0, \infty)$ is a strictly decreasing, continuous function.
Let $g:(0, \infty) \rightarrow(0, \infty)$ be the inverse of f.
Then g is also a strictly decreasing, continuous function of the interval $(0, \infty)$ onto itself.

We now return to the equation

$$
\ln x=\frac{\ln t}{t-1} \equiv f(t) \quad(f(1)=1)
$$

$f:(0, \infty) \rightarrow(0, \infty)$ is a strictly decreasing, continuous function.
Let $g:(0, \infty) \rightarrow(0, \infty)$ be the inverse of f.
Then g is also a strictly decreasing, continuous function of the interval $(0, \infty)$ onto itself.

$$
t=g(f(t))=g(\ln x) \quad \text { and thus } \quad E(x)=y=t x=x g(\ln x)
$$

The inequality

$$
\frac{2}{t+1} \leq f(t)=\frac{\ln t}{t-1} \leq \frac{1}{\sqrt{t}}
$$

is valid for all $t>0$ and equality occurs only for $t=1$.

The inequality

$$
\frac{2}{t+1} \leq f(t)=\frac{\ln t}{t-1} \leq \frac{1}{\sqrt{t}}
$$

is valid for all $t>0$ and equality occurs only for $t=1$.
The proof is elementary. It is accessible to calculus students and real analysis students should be able to prove it.

The inequality

$$
\frac{2}{t+1} \leq f(t)=\frac{\ln t}{t-1} \leq \frac{1}{\sqrt{t}}
$$

is valid for all $t>0$ and equality occurs only for $t=1$.
The proof is elementary. It is accessible to calculus students and real analysis students should be able to prove it.

$$
\begin{gathered}
\frac{2}{t+1}=1-\frac{1}{2}(t-1)+\frac{1}{4}(t-1)^{2}+\cdots \\
\frac{\ln t}{t-1}=1-\frac{1}{2}(t-1)+\frac{1}{3}(t-1)^{2}+\cdots \\
\frac{1}{\sqrt{t}}=1-\frac{1}{2}(t-1)+\frac{3}{8}(t-1)^{2}+\cdots
\end{gathered}
$$

The inequality

$$
\frac{e^{2}}{x} \leq E(x) \leq \frac{x}{(\ln x)^{2}}
$$

is valid for all $x>1$ and equality occurs only for $x=e$.

The inequality

$$
\frac{e^{2}}{x} \leq E(x) \leq \frac{x}{(\ln x)^{2}}
$$

is valid for all $x>1$ and equality occurs only for $x=e$.

$$
\ln x=\frac{\ln t}{t-1}<\frac{1}{\sqrt{t}}=\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{E(x)}}
$$

The inequality

$$
\frac{e^{2}}{x} \leq E(x) \leq \frac{x}{(\ln x)^{2}}
$$

is valid for all $x>1$ and equality occurs only for $x=e$.

$$
\ln x=\frac{\ln t}{t-1}<\frac{1}{\sqrt{t}}=\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{E(x)}}
$$

The equivalence

$$
\frac{2}{t+1}<\frac{\ln t}{t-1} \quad \Leftrightarrow \quad 2<\ln x^{t+1}
$$

reveals that

$$
E(x)=y=x^{t}=\frac{x^{t+1}}{x}>\frac{e^{2}}{x}
$$

$$
\begin{aligned}
\frac{e^{2}}{x} & =e-(x-e)+\frac{1}{e}(x-e)^{2}+\cdots \\
E(x) & =e-(x-e)+\frac{5}{3 e}(x-e)^{2}+\cdots \\
\frac{x}{(\ln x)^{2}} & =e-(x-e)+\frac{2}{e}(x-e)^{2}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
\frac{e^{2}}{x} & =e-(x-e)+\frac{1}{e}(x-e)^{2}+\cdots \\
E(x) & =e-(x-e)+\frac{5}{3 e}(x-e)^{2}+\cdots \\
\frac{x}{(\ln x)^{2}} & =e-(x-e)+\frac{2}{e}(x-e)^{2}+\cdots
\end{aligned}
$$

The three functions are very close near e, but there is a vast discrepancy as $x \rightarrow 1^{+}$and $x \rightarrow \infty$.

The function E is a strictly decreasing, convex function on the interval $(1, \infty)$.

The function E is a strictly decreasing, convex function on the interval $(1, \infty)$.

It is sufficient to prove that $E^{\prime}(x)<0$ and $E^{\prime \prime}(x)>0$ for all $x>1$.

The function E is a strictly decreasing, convex function on the interval $(1, \infty)$.

It is sufficient to prove that $E^{\prime}(x)<0$ and $E^{\prime \prime}(x)>0$ for all $x>1$.
Given the range of the function $e^{f(t)}$, it is sufficient to prove that $E^{\prime}\left(e^{f(t)}\right)<0$ and $E^{\prime \prime}\left(e^{f(t)}\right)>0$ for all $t>0$.

$$
E(x)=x g(\ln x) ;
$$

$$
E\left(e^{f(t)}\right)=t e^{f(t)} ;
$$

$$
E^{\prime}\left(e^{f(t)}\right) f^{\prime}(t)=t f^{\prime}(t)+1 ;\left(\text { want } t f^{\prime}(t)+1>0\right)
$$

$$
E^{\prime \prime}\left(e^{f(t)}\right) e^{f(t)} f^{\prime}(t)=1-\frac{f^{\prime \prime}(t)}{\left(f^{\prime}(t)\right)^{2}} \cdot\left(\text { want } f^{\prime \prime}(t)>\left(f^{\prime}(t)\right)^{2}\right)
$$

$$
(t-1) f(t)=\ln t ;
$$

$$
(t-1) f(t)=\ln t ;
$$

$$
(t-1) f^{\prime}(t)+f(t)=\frac{1}{t} \quad \Leftrightarrow \quad t(t-1) f^{\prime}(t)=1-t f(t)
$$

$$
\begin{gathered}
(t-1) f(t)=\ln t \\
(t-1) f^{\prime}(t)+f(t)=\frac{1}{t} \Leftrightarrow t(t-1) f^{\prime}(t)=1-t f(t) \\
(t-1) f^{\prime \prime}(t)+2 f^{\prime}(t)=-\frac{1}{t^{2}} \quad \Leftrightarrow \quad t^{2}(t-1)^{2} f^{\prime \prime}(t)=1-3 t+2 t^{2} f(t)
\end{gathered}
$$

$$
t f^{\prime}(t)+1=\frac{1-t f(t)}{t-1}+1=\frac{t(1-f(t))}{t-1}
$$

$$
t f^{\prime}(t)+1=\frac{1-t f(t)}{t-1}+1=\frac{t(1-f(t))}{t-1}
$$

$$
t^{2}(t-1)^{2}\left(f^{\prime \prime}(t)-\left(f^{\prime}(t)\right)^{2}\right)=-t^{2}(f(t))^{2}+2 t(t+1) f(t)-3 t
$$

$$
t f^{\prime}(t)+1=\frac{1-t f(t)}{t-1}+1=\frac{t(1-f(t))}{t-1}
$$

$$
t^{2}(t-1)^{2}\left(f^{\prime \prime}(t)-\left(f^{\prime}(t)\right)^{2}\right)=-t^{2}(f(t))^{2}+2 t(t+1) f(t)-3 t
$$

$$
2(t+1) f(t)>3+t(f(t))^{2}
$$

$$
t f^{\prime}(t)+1=\frac{1-t f(t)}{t-1}+1=\frac{t(1-f(t))}{t-1}
$$

$$
\begin{gathered}
t^{2}(t-1)^{2}\left(f^{\prime \prime}(t)-\left(f^{\prime}(t)\right)^{2}\right)=-t^{2}(f(t))^{2}+2 t(t+1) f(t)-3 t \\
2(t+1) f(t)>3+t(f(t))^{2}
\end{gathered}
$$

These are not difficult but a bit tedious to prove analytically.

$$
t f^{\prime}(t)+1=\frac{1-t f(t)}{t-1}+1=\frac{t(1-f(t))}{t-1}
$$

$$
\begin{gathered}
t^{2}(t-1)^{2}\left(f^{\prime \prime}(t)-\left(f^{\prime}(t)\right)^{2}\right)=-t^{2}(f(t))^{2}+2 t(t+1) f(t)-3 t \\
2(t+1) f(t)>3+t(f(t))^{2}
\end{gathered}
$$

These are not difficult but a bit tedious to prove analytically.

How about other options?

How about other options?

1. Use parametric equations.

$$
x(t)=\left(1+\frac{1}{t}\right)^{t}, \quad y(t)=\left(1+\frac{1}{t}\right)^{t+1}
$$

How about other options?

1. Use parametric equations.

$$
\begin{gathered}
x(t)=\left(1+\frac{1}{t}\right)^{t}, \quad y(t)=\left(1+\frac{1}{t}\right)^{t+1} \\
\frac{d^{2} y}{d x^{2}}=\frac{1}{x^{\prime}(t)} \cdot \frac{d}{d t}\left(\frac{y^{\prime}(t)}{x^{\prime}(t)}\right)
\end{gathered}
$$

How about other options?

1. Use parametric equations.

$$
\begin{gathered}
x(t)=\left(1+\frac{1}{t}\right)^{t}, \quad y(t)=\left(1+\frac{1}{t}\right)^{t+1} \\
\frac{d^{2} y}{d x^{2}}=\frac{1}{x^{\prime}(t)} \cdot \frac{d}{d t}\left(\frac{y^{\prime}(t)}{x^{\prime}(t)}\right)
\end{gathered}
$$

Show that the function $y^{\prime}(t) / x^{\prime}(t)$ is increasing for $t>0$.

How about other options?

1. Use parametric equations.

$$
\begin{gathered}
x(t)=\left(1+\frac{1}{t}\right)^{t}, \quad y(t)=\left(1+\frac{1}{t}\right)^{t+1} \\
\frac{d^{2} y}{d x^{2}}=\frac{1}{x^{\prime}(t)} \cdot \frac{d}{d t}\left(\frac{y^{\prime}(t)}{x^{\prime}(t)}\right)
\end{gathered}
$$

Show that the function $y^{\prime}(t) / x^{\prime}(t)$ is increasing for $t>0$.
This gets very messy. (But it does work.)
2. Return to the equation

$$
\frac{\ln x}{x}=\frac{\ln E(x)}{E(x)}
$$

and take two derivatives.
2. Return to the equation

$$
\frac{\ln x}{x}=\frac{\ln E(x)}{E(x)}
$$

and take two derivatives.

This also works but, as you may envision, it is extremely tedious.

It follows that $E(x)=U(\beta(x))$.
3. Return to the function $\beta(x)=\frac{\ln x}{x}$.
3. Return to the function $\beta(x)=\frac{\ln x}{x}$.

Let $U:(0,1 / e] \rightarrow(1, e]$ be the inverse of β.
3. Return to the function $\beta(x)=\frac{\ln x}{x}$.

Let $U:(0,1 / e] \rightarrow(1, e]$ be the inverse of β.
Then $E(x)=U(\beta(x))$ for all $x \geq e$.
3. Return to the function $\beta(x)=\frac{\ln x}{x}$.

Let $U:(0,1 / e] \rightarrow(1, e]$ be the inverse of β.
Then $E(x)=U(\beta(x))$ for all $x \geq e$.
β is decreasing and convex on $\left[e^{3 / 2}, \infty\right)$;
3. Return to the function $\beta(x)=\frac{\ln x}{x}$.

Let $U:(0,1 / e] \rightarrow(1, e]$ be the inverse of β.
Then $E(x)=U(\beta(x))$ for all $x \geq e$.
β is decreasing and convex on $\left[e^{3 / 2}, \infty\right)$;
U is increasing and convex on $(0,1 / e]$.
3. Return to the function $\beta(x)=\frac{\ln x}{x}$.

Let $U:(0,1 / e] \rightarrow(1, e]$ be the inverse of β.
Then $E(x)=U(\beta(x))$ for all $x \geq e$.
β is decreasing and convex on $\left[e^{3 / 2}, \infty\right)$;
U is increasing and convex on $(0,1 / e]$.
It follows that $E=U \circ f$ is convex on $\left[e^{3 / 2}, \infty\right)$.
3. Return to the function $\beta(x)=\frac{\ln x}{x}$.

Let $U:(0,1 / e] \rightarrow(1, e]$ be the inverse of β.
Then $E(x)=U(\beta(x))$ for all $x \geq e$.
β is decreasing and convex on $\left[e^{3 / 2}, \infty\right)$;
U is increasing and convex on $(0,1 / e]$.
It follows that $E=U \circ f$ is convex on $\left[e^{3 / 2}, \infty\right)$.
This gets us close, but alas, we need the interval $[e, \infty)$.
4. Use the Lambert W function (the inverse of $x e^{x}$).
4. Use the Lambert W function (the inverse of $x e^{x}$).

With a little effort, we can show that

$$
E(x)=\exp (-W(-\beta(x))) \quad \text { and } \quad E(x)=\frac{W(-\beta(x))}{-\beta(x)}
$$

4. Use the Lambert W function (the inverse of $x e^{x}$).

With a little effort, we can show that

$$
E(x)=\exp (-W(-\beta(x))) \quad \text { and } \quad E(x)=\frac{W(-\beta(x))}{-\beta(x)}
$$

The first expression can be used to show that E is convex on the interval $\left[e^{3 / 2}, \infty\right)$.
4. Use the Lambert W function (the inverse of $x e^{x}$).

With a little effort, we can show that

$$
E(x)=\exp (-W(-\beta(x))) \quad \text { and } \quad E(x)=\frac{W(-\beta(x))}{-\beta(x)}
$$

The first expression can be used to show that E is convex on the interval $\left[e^{3 / 2}, \infty\right)$.

For this approach, we need to use an abstract function and, more importantly, we still come up short.

So, we humbly state, it seems that our method is the best.

So, we humbly state, it seems that our method is the best.

The convexity of the curve $x^{y}=y^{x}$, to appear in Math. Gazette. coauthor: Alan Beardon, University of Cambridge

So, we humbly state, it seems that our method is the best.

The convexity of the curve $x^{y}=y^{x}$, to appear in Math. Gazette. coauthor: Alan Beardon, University of Cambridge

Thanks for listening.

