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Find solutions to the equation xy = y x .

Trivial solutions occur when x = y .

One simple nontrivial solution is 24 = 42.

We can seek solutions in the set of integers, the set of rational
numbers, the set of real numbers, or the set of complex numbers.

We restrict ourselves to the set of positive real numbers.
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Suppose x and y satisfy xy = y x , where x 6= y unless x = e = y .

Denote the value of y corresponding to x by E (x).

It follows that
ln x

x
=

lnE (x)

E (x)
.

Hence, solutions to xy = y x correspond to horizontal chords on the

graph of β(x) =
ln x

x
.
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1 u E (v) E (u)ve

•
y = 10 ln x/x

It is clear that
ln u

u
=

lnE (u)

E (u)
,

ln v

v
=

lnE (v)

E (v)
, and E (e) = e.



Define t by t = y/x .

xy = y x ⇔ t x ln x = x ln(t x)

⇔ t ln x = ln t + ln x

⇔ ln x =
ln t

t − 1

Parametric equations for the curve y = E (x) are thus

x(t) = t1/(t−1), y(t) = tt/(t−1)

as t runs from 0 to ∞.

t = 3 yields x =
√

3 and y = 3
√

3:
√

3
3
√
3

= (3
√

3)
√
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Note that y(t) = t x(t) and y(t) = (x(t))t .
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e •
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With t = 1 +
1

s
, where s > 0, the parametric equations

x(t) = t1/(t−1), y(t) = tt/(t−1)

become

x(s) =
(

1 +
1

s

)s
, y(s) =

(
1 +

1

s

)s+1
.

You may recognize a familiar limit here. These equations easily
generate rational numbers that satisfy xy = y x .

s = 1, 2, 3 gives (2, 4),
(9

4
,

27

8

)
,
(64

27
,

256

81

)
.

Rational solutions x < y if and only if s is a positive integer.
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We now return to the equation

ln x =
ln t

t − 1
≡ f (t) (f (1) = 1)

f : (0,∞)→ (0,∞) is a strictly decreasing, continuous function.

Let g : (0,∞)→ (0,∞) be the inverse of f .

Then g is also a strictly decreasing, continuous function of the
interval (0,∞) onto itself.

t = g(f (t)) = g(ln x) and thus E (x) = y = t x = x g(ln x).
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The inequality
2

t + 1
≤ f (t) =

ln t

t − 1
≤ 1√

t

is valid for all t > 0 and equality occurs only for t = 1.

The proof is elementary. It is accessible to calculus students and
real analysis students should be able to prove it.

2
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2
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4
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The inequality
e2

x
≤ E (x) ≤ x

(ln x)2

is valid for all x > 1 and equality occurs only for x = e.

ln x =
ln t

t − 1
<

1√
t

=

√
x
√
y

=

√
x

E (x)
.

The equivalence

2

t + 1
<

ln t

t − 1
⇔ 2 < ln x t+1,

reveals that

E (x) = y = x t =
x t+1

x
>

e2

x
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x
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The three functions are very close near e, but there is a vast
discrepancy as x → 1+ and x →∞.
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The function E is a strictly decreasing, convex function on the
interval (1,∞).

It is sufficient to prove that E ′(x) < 0 and E ′′(x) > 0 for all x > 1.

Given the range of the function ef (t), it is sufficient to prove that
E ′(ef (t)) < 0 and E ′′(ef (t)) > 0 for all t > 0.
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E (x) = x g(ln x);

E (ef (t)) = t ef (t);

E ′(ef (t))f ′(t) = t f ′(t) + 1;
(

want t f ′(t) + 1 > 0
)

E ′′(ef (t))ef (t)f ′(t) = 1− f ′′(t)

(f ′(t))2
.
(

want f ′′(t) > (f ′(t))2
)



(t − 1)f (t) = ln t;

(t − 1)f ′(t) + f (t) =
1

t
⇔ t(t − 1)f ′(t) = 1− t f (t)

(t−1)f ′′(t)+2f ′(t) = − 1

t2
⇔ t2(t−1)2f ′′(t) = 1−3t+2t2f (t)
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1− t f (t)

t − 1
+ 1 =

t(1− f (t))

t − 1

t2(t − 1)2
(
f ′′(t)− (f ′(t))2

)
= −t2(f (t))2 + 2t(t + 1)f (t)− 3t

2(t + 1)f (t) > 3 + t(f (t))2

These are not difficult but a bit tedious to prove analytically.
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How about other options?

1. Use parametric equations.

x(t) =
(

1 +
1

t

)t
, y(t) =

(
1 +

1

t

)t+1

d2y

dx2
=

1

x ′(t)
· d
dt

(y ′(t)

x ′(t)

)
Show that the function y ′(t)/x ′(t) is increasing for t > 0.

This gets very messy. (But it does work.)
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ln x
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and take two derivatives.

This also works but, as you may envision, it is extremely tedious.
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1 U(β(x)) xe

1
e

•
y = β(x)

It follows that E (x) = U(β(x)).



3. Return to the function β(x) =
ln x

x
.

Let U : (0, 1/e]→ (1, e] be the inverse of β.

Then E (x) = U(β(x)) for all x ≥ e.

β is decreasing and convex on [e3/2,∞);

U is increasing and convex on (0, 1/e].

It follows that E = U ◦ f is convex on [e3/2,∞).

This gets us close, but alas, we need the interval [e,∞).
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4. Use the Lambert W function (the inverse of x ex).

With a little effort, we can show that

E (x) = exp(−W (−β(x))) and E (x) =
W (−β(x))

−β(x)
.

The first expression can be used to show that E is convex on the
interval [e3/2,∞).

For this approach, we need to use an abstract function and, more
importantly, we still come up short.
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So, we humbly state, it seems that our method is the best.

The convexity of the curve xy = y x , to appear in Math. Gazette.

coauthor: Alan Beardon, University of Cambridge

Thanks for listening.
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