
Math 244: Review for Final Exam

Our final exam is scheduled for Friday afternoon, December 16. The exam begins at 2 pm in our usual

classroom, Olin 301. The exam is written for a two hour period, but you may have three hours for the exam

should you choose to stay that long (and many students have done so in the past). This means that it will

most likely be 5:00 pm and very dark when you finish.

The final exam is comprehensive, that is, it covers all of the material that has been discussed this

semester. You might find it helpful to read the list of assignments for the semester and to flip through

the sections of the textbook that we have covered. You need to be familiar with the basic concepts and

techniques we have considered. This includes the standard formulas that frequently occur in the problems

that we have been doing (such as the general form of spring-mass problems, basic Maclaurin series, formulas

for Laplace transforms, etc.). You can also look over the four exams and the extra problems that have been

assigned. If you want to look at some specific problems from the textbook, the following list can serve as a

guide. It is probably not possible to do all of these problems again—there is simply not enough time to do

so. However, you can read them over to remind yourself of the expectations. Hopefully, for the majority of

the problems, you will know how to start the problems and will not need to actually carry out the details.

1.1: 11, 12, 23, 24 3.3: 11, 21, 23, 24

1.2: 7, 9 3.4: 2, 11, 17ab, 18

2.1: 9c, 13, 31 3.5: 1, 17

2.2: 2, 9ac, 12ac, 23 3.6: 16, 17

2.3: 3, 4, 10, 16, 21ab 3.7: 7, 10, 29a

2.4: 2 (solve also), 17, 23 3.8: 9, 12

2.5: 3, 15, 18, 28a 5.2: 2, 5, 7

2.6: 3, 13 5.3: 6, 7, 13

2 misc: 1, 9, 17, 22 5.4: 9, 13, 16, 18

3.1: 11, 19, 20 5.5: 6ab, 9

3.2: 11, 17, 34 7.5: 2, 5, 16

There are no Chapter 6 problems listed since it is assumed that this material is fresh in your mind. Further-

more, you should be able to write a concise and coherent paragraph on each of the following items:

1. the derivation of the general solution to a first order linear differential equation (see page 36);

2. an explanation for the general solution to differential equations of the form ay′′ + by′ + cy = 0,

including the origin of the characteristic equation and the form of the solution based on the roots

of the equation (Chapter 3);

3. a statement and proof of the principle of superposition (page 147);

4. a statement and proof of Abel’s Theorem (see page 153);

5. the definition of the Laplace transform, the conditions necessary for a function to have a Laplace

transform, and the derivation of formulas from this definition.

There will most likely be one or possibly two of these “proofs” on the final exam so plan accordingly. I may

allow calculators for the final exam (and I will let you know in advance if you should bring one), but in that

case, you must sign the following statement that will appear at the top of the exam:

I certify that I did not use any electronic device for data storage/retrieval or symbolic manipulation.

For example, you may use a calculator to find sin 4 or to solve ex−4x = 12 or to sketch a graph of a function.

However, you may not use your calculator for such things as finding the partial fraction decomposition of

1/s2(s2 + 9), finding an antiderivative for xex, solving the differential equation y′′ − 2y′ + 4y = sin t, or

storing/retrieving proofs or formulas. Using your calculator (or some other electronic device) for these other

purposes constitutes academic dishonesty and will be handled appropriately.



Most of the problems on the final exam will be similar to problems that you have seen before. However,

it is assumed that you have learned how to approach novel problems during the semester as well and there

may be a problem or two on the final exam that forces you to think outside the box. If you have been keeping

up this semester and doing the work, you will be well-prepared to tackle any problem that appears on the

final exam. If you want some further problems, you may consider the following; some of these (or variations

thereof) have appeared on final exams in the past. Cryptic answers are given at the bottom of the page.

1. For problem 3.7.29, find the smallest number T (to four decimal places) so that |u(t)| < 0.01 for all

t > T .

2. Let φ be the unique solution to the initial value problem

4y′′ + y = 4 δ(t− 4) + 8 δ(t− 12), y(0) = 0, y′(0) = 0.

Find the amplitude of φ for t > 12. Give your answer in symbolic terms if possible and also as a decimal

to the nearest thousandth.

3. A certain chemical, let’s call it Chemical X, decays at a rate proportional to the square root of the

amount present. Initially, there are 400 grams of chemical X; exactly two hours later there are 225

grams. Find the time, to the nearest minute, when there are only 20 grams of Chemical X left.

4. Let f(t) be the solution to the initial value problem y′ = t− y + 2, y(0) = α. Determine the value of α

so that the minimum value of f(t) on the interval [0,∞) is 3.

5. Solve the initial value problem

(y′′
y′

)′
− 1

2

(y′′
y′

)2
= 0, y(0) = 0, y′(0) = 1, y′′(0) = 1.

6. Let y(t) be the solution to the initial value problem

t2y′′ − 2y = 0, y(1) = 9, y′(1) = −6.

Find the minimum value of the function y on the interval t > 0.

1. The value of T is 39.2495.

2. The amplitude of φ for t > 12 is
√

20 + 16 cos 4 ≈ 3.089.

3. There are 20 grams of Chemical X left after just under 6 hours and 13 minutes.

4. The required value of α is e+ 1.

5. The solution to the initial value problem is y(t) =
2t

2− t
.

6. The minimum value of y(t) for t > 0 is 3 3
√

16.



Problem: Derive, with careful explanation, the solution to a general first order linear differential equation.

Solution: The general first order linear differential equation has the form y′ + p(t)y = q(t), where p and

q are continuous functions. The sum on the left, with a little thought, hints at a product rule derivative.

Suppose we multiply the equation by some integrating factor I(t):

I(t)y′ + p(t)I(t)y = I(t)q(t) and compare it to I(t)y′ + I ′(t)y = I(t)q(t),

where the second form contains the derivative of the product I(t)y. In order for the two equations to align,

we need

I ′(t) = p(t)I(t) and thus I(t) = Ae
∫
p(t) dt,

where A is a constant. Taking A to be 1 and using the resulting function as our value for I(t), the differential

equation becomes

(
I(t)y

)′
= I(t)q(t) and it follows that I(t)y =

∫
I(t)q(t) dt+ C,

where C is an arbitrary constant. Therefore, the general solution to the differential equation y′+p(t)y = q(t)

is

y = e−
∫
p(t) dt

∫
I(t)q(t) dt+ Ce−

∫
p(t) dt,

where C is any constant.

Problem: State and prove the principle of superposition for second order differential equations.

Solution: Consider the second order linear homogeneous differential equation y′′ + p(t)y′ + q(t)y = 0. The

principle of superposition states the following: if y1 and y2 are solutions to the differential equation, then

y = c1y1 + c2y2 is also a solution to the differential equation, where c1 and c2 are arbitrary constants. To

verify this, we use basic properties of derivatives and obtain

y′′ + p(t)y′ + q(t)y = (c1y1 + c2y2)′′ + p(t)(c1y1 + c2y2)′ + q(t)(c1y1 + c2y2)

= c1y
′′
1 + c2y

′′
2 + p(t)(c1y

′
1 + c2y

′
2) + q(t)(c1y1 + c2y2)

= c1
(
y′′1 + p(t)y′1 + q(t)y1

)
+ c2

(
y′′2 + p(t)y′2 + q(t)y2

)
= c1 · 0 + c2 · 0 = 0,

where the last steps follow from the fact that y1 and y2 satisfy the original differential equation.



Problem: Explain how to solve the second order differential equation ay′′ + by′ + cy = 0, where a, b, and c

are constants.

Solution: Since the derivatives of a function of the form ert, where r is a constant, all have a similar form, it

is reasonable to guess that a solution to the differential equation may involve functions of this type. Suppose

that y = ert. We then have

0 = ay′′ + by′ + cy = ar2ert + brert + cert = (ar2 + br + c)ert.

Since ert is never zero, we find that ar2 + br+ c = 0. This quadratic equation is known as the characteristic

equation of the differential equation. If r is a root of this equation, then ert is a solution to the differential

equation. However, care must be taken when the roots are repeated or are complex. Since there are three

possibilities for the roots of a quadratic equation, the solution to the differential equation has three possible

forms.

i. If there are two distinct real roots r1 and r2, then y = c1e
r1t + c2e

r2t.

ii. If there is a repeated real root r1, then y = c1e
r1t + c2te

r2t.

iii. If the roots are complex numbers of the form λ± µi, then y = c1e
λt cos(µt) + c2e

λt sin(µt).

In each case, the numbers c1 and c2 represent arbitrary constants (see the previous problem).

Problem: State and prove Abel’s Theorem.

Solution: Abel’s Theorem states that if y1 and y2 are two solutions to the second order linear differential

equation y′′+ p(t)y′+ q(t)y = 0, then there exists a constant C such that W (y1, y2)(t) = Ce−
∫
p(t) dt, where

W represents the Wronskian of the two functions. To prove this, we let W (t) = W (y1, y2)(t) to simplify the

notation and note that

W (t) = y1y
′
2 − y′1y2 and W ′(t) = (y1y

′′
2 + y′1y

′
2)− (y′1y

′
2 + y′′1 y2) = y1y

′′
2 − y′′1 y2.

Since y1 and y2 satisfy the differential equation, we know that

y′′1 + p(t)y′1 + q(t)y1 = 0 and y′′2 + p(t)y′2 + q(t)y2 = 0.

Multiplying the first equation by −y2 and the second equation by y1, then adding the results yields

(
−y′′1 y2 − p(t)y′1y2

)
+
(
y1y
′′
2 + p(t)y1y

′
2

)
= 0 or y1y

′′
2 − y′′1 y2 + p(t)

(
y1y
′
2 − y′1y2

)
= 0.

Referring to our properties of the Wronskian, the last equation has the form W ′(t) = −p(t)W (t). It follows

that W (t) = Ce−
∫
p(t) dt for some constant C.



Problem: Define the Laplace transform and state conditions under which a function f has a Laplace

transform.

Solution: The Laplace transform of a function f defined on the interval [0,∞) is defined by

L{f(t)}(s) =

∫ ∞
0

e−stf(t) dt

for all values of s for which the improper integral converges. In order for the Laplace transform of f to exist,

the function f must be piecewise continuous on each interval [0, b] for b > 0 and exponentially bounded, that

is, there must exist constants K and a such that |f(t)| ≤ Keat. Under these conditions on f , the Laplace

transform of f is guaranteed to exist at least for s > a.

As a simple example, we will find that Laplace transform of f(t) = t. In this case, we find that

L{t}(s) =

∫ ∞
0

e−stt dt definition of Laplace transform

= lim
T→∞

∫ T

0

te−st dt definition of improper integral

= lim
T→∞

1

s2
(−st− 1)e−st

∣∣∣T
0

formula from integration by parts

= lim
T→∞

1

s2

(
−sT + 1

esT
+ 1
)

evaluate the integral

=
1

s2

(
0 + 1

)
find the limit, assuming s > 0

=
1

s2
simplify


