\mathbb{R}^n is the set of all *n*-tuples of real numbers

 $\mathcal{C}([a, b])$ is the set of all continuous functions defined on [a, b]

 \mathcal{P}_n is the set of all polynomials of degree less than or equal to n

 P is the set of all polynomials

 c_0 is the set of all sequences $\{a_k\}$ for which $\{a_k\}$ converges to 0

 ℓ_1 is the set of all sequences $\{a_k\}$ for which the series \sum^{∞} $|a_k|$ converges

 ℓ_2 is the set of all sequences $\{a_k\}$ for which the series \sum^{∞} $|a_k|^2$ converges

 $k=1$

 ℓ_{∞} is the set of all sequences ${a_k}$ for which ${a_k}$ is bounded

A metric space (X, d) consists of a set X and a real-valued function d defined on $X \times X$ that satisfies the following four properties.

 $k=1$

- 1. $d(x, y) \geq 0$ for all $x, y \in X$.
- 2. $d(x, y) = 0$ if and only if $x = y$.
- 3. $d(x, y) = d(y, x)$ for all $x, y \in X$.
- 4. $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$.

The function d , which gives the distance between two points in X , is known as a metric.

A normed linear space X is a vector space X with a norm defined on it. A norm on a vector space X is a real-valued function defined on X with the following four properties:

- 1. $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in X$.
- 2. $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- 3. $\|c\mathbf{x}\| = |c| \|\mathbf{x}\|$ for all $\mathbf{x} \in X$ and $c \in \mathbb{R}$.
- 4. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in X$.

A norm on X defines a metric on X via the definition $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$.

An inner product space X is a vector space X with an inner product defined on it. An inner product on X is a real-valued function defined on $X \times X$ with the following five properties:

- 1. $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ for all $\mathbf{x} \in X$.
- 2. $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- 3. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ for all $\mathbf{x}, \mathbf{y} \in X$.
- 4. $\langle c\mathbf{x}, \mathbf{y} \rangle = c\langle \mathbf{x}, \mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in X$ and $c \in \mathbb{R}$.
- 5. $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$.

An inner product on X defines a norm on X via the definition $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.

Every normed linear space is a metric space.

Every inner product space is a normed linear space and thus a metric space.

One metric on the set ℓ_{∞} is given by $d({a_k}, {b_k}) = \sum_{k=0}^{\infty} \frac{|a_k - b_k|}{\alpha_k}$ $k=1$ $\frac{8}{2^k}$. Another metric on the set ℓ_{∞} is given by $d({a_k}, {b_k}) = \sum_{k=0}^{\infty}$ $k=1$ $|a_k - b_k|$ $\frac{|a_k - b_{k}|}{2^k(1 + |a_k - b_k|)}.$

A norm on the set $\mathcal{C}([a, b])$ is given by $||x(t)|| = \max\{|x(t)| : t \in [a, b]\}.$ Another norm on the set $\mathcal{C}([a, b])$ is given by $||x(t)|| = \sqrt{\int_{b}^{b} f(x(t)) |f(x)|}$ a $(x(t))^2 dt$.

A norm on the set ℓ_1 is given by $\|\{a_k\}\| = \sum_{k=1}^{\infty}$ $k=1$ $|a_k|.$

An inner product on the set $\mathcal{C}([a, b])$ is given by $\langle x(t), y(t) \rangle = \int^b$ a $x(t)y(t) dt$. This inner product generates the norm $||x(t)|| = \sqrt{\int_0^b$ a $(x(t))^2 dt$.

An inner product on the set ℓ_2 is given by $\langle \{a_k\}, \{b_k\}\rangle = \sum_{k=1}^{\infty}$ $k=1$ $a_k b_k$. This inner product generates the norm $||{a_k}|| = \sqrt{\sum_{k=1}^{\infty}$ $k=1$ a_k^2 .

Let $\{x_n\}$ be a sequence in a metric space (X, d) . The sequence $\{x_n\}$ is a Cauchy sequence if for each $\epsilon > 0$ there exists a positive integer N such that $d(x_n, x_m) < \epsilon$ for all $m, n \ge N$.

A metric space (X, d) is a complete metric space if every Cauchy sequence in (X, d) converges to a point in X.

A Banach space is a normed linear space that is complete under the metric defined by its norm.

A Hilbert space is an inner product space that is complete under the metric defined by it inner product.

The metric $d({a_k}, {b_k}) = \sum_{k=0}^{\infty}$ $k=1$ $|a_k - b_k|$ $\frac{|\alpha_k|}{2^k(1+|a_k-b_k|)}$ on ℓ_{∞} does not come from a norm. The set $\mathcal{C}([a, b])$ with the norm $||x(t)|| = \max\{|x(t)| : t \in [a, b]\}\$ is a Banach space. The set $\mathcal{C}([a, b])$ with the norm $||x(t)|| = \sqrt{\int_0^b$ a $(x(t))^2 dt$ is not a Banach space. The set ℓ_2 with the inner product $\langle \{a_k\}, \{b_k\}\rangle = \sum_{k=1}^{\infty}$ $k=1$ $a_k b_k$ is a Hilbert space.

Cauchy-Schwarz Inequality:

In any inner product space, we have $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \, ||\mathbf{y}||$ for all \mathbf{x} and \mathbf{y} .

Assume that $y \neq 0$ and let $c = \frac{\langle x, y \rangle}{\langle x, y \rangle}$ $\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{y}, \mathbf{y} \rangle}$. We then have

$$
0 \le ||\mathbf{x} - c\mathbf{y}||^2 = \langle \mathbf{x} - c\mathbf{y}, \mathbf{x} - c\mathbf{y} \rangle
$$

\n
$$
= \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, c\mathbf{y} \rangle - \langle c\mathbf{y}, \mathbf{x} \rangle + \langle c\mathbf{y}, c\mathbf{y} \rangle
$$

\n
$$
= \langle \mathbf{x}, \mathbf{x} \rangle - c \langle \mathbf{x}, \mathbf{y} \rangle - c(\langle \mathbf{x}, \mathbf{y} \rangle - c \langle \mathbf{y}, \mathbf{y} \rangle)
$$

\n
$$
= \langle \mathbf{x}, \mathbf{x} \rangle - c \langle \mathbf{x}, \mathbf{y} \rangle
$$

\n
$$
= \langle \mathbf{x}, \mathbf{x} \rangle - \frac{\langle \mathbf{x}, \mathbf{y} \rangle^2}{\langle \mathbf{y}, \mathbf{y} \rangle}
$$

\n
$$
= ||\mathbf{x}||^2 - \frac{\langle \mathbf{x}, \mathbf{y} \rangle^2}{||\mathbf{y}||^2}
$$

\n
$$
= \frac{||\mathbf{x}||^2 ||\mathbf{y}||^2 - \langle \mathbf{x}, \mathbf{y} \rangle^2}{||\mathbf{y}||^2}
$$

and thus

$$
\langle \mathbf{x}, \mathbf{y} \rangle^2 \leq \|\mathbf{x}\|^2 \|\mathbf{y}\|^2 \qquad \Leftrightarrow \qquad |\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\| \|\mathbf{y}\|.
$$

Triangle Inequality:

In any inner product space, we have $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all **x** and **y**.

For vectors ${\bf x}$ and ${\bf y},$ we have

$$
\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle
$$

\n
$$
= \langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle
$$

\n
$$
\leq \langle \mathbf{x}, \mathbf{x} \rangle + 2|\langle \mathbf{x}, \mathbf{y} \rangle| + \langle \mathbf{y}, \mathbf{y} \rangle
$$

\n
$$
= \|\mathbf{x}\|^2 + 2|\langle \mathbf{x}, \mathbf{y} \rangle| + \|\mathbf{y}\|^2
$$

\n
$$
\leq \|\mathbf{x}\|^2 + 2\|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\|^2
$$

\n
$$
= (\|\mathbf{x}\| + \|\mathbf{y}\|)^2
$$

and thus $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|.$

In the inner product space $\mathcal{C}([0,6])$, find an orthogonal basis for span $\{1,t,t^2\}$.

In the inner product space $\mathcal{C}([1,2]),$ find an orthogonal basis for span $\{t,\ln t\}.$

$$
\langle t, t \rangle = \int_{1}^{2} t^{2} dt = \frac{t^{3}}{3} \Big|_{1}^{2} = \frac{7}{3}
$$

$$
\langle t, \ln t \rangle = \int_{1}^{2} t \ln t dt = \left(\frac{1}{2} t^{2} \ln t - \frac{1}{4} t^{2}\right) \Big|_{1}^{2} = 2 \ln 2 - \frac{3}{4}
$$

$$
\ln t - \frac{\langle t, \ln t \rangle}{\langle t, t \rangle} t = \ln t - \frac{2 \ln 2 - \frac{3}{4}}{\frac{7}{3}} t = \ln t + \frac{3}{7} \Big(\frac{3}{4} - 2 \ln 2\Big) t = \ln t + \Big(\frac{9}{28} - \frac{6}{7} \ln 2\Big) t
$$

An orthogonal basis is thus $\{t, 28 \ln t + (9 - 24 \ln 2)t\}.$

3