\mathbb{R}^n is the set of all *n*-tuples of real numbers

 $\mathcal{C}([a, b])$ is the set of all continuous functions defined on [a, b]

 \mathcal{P}_n is the set of all polynomials of degree less than or equal to n

 ${\mathcal P}$ is the set of all polynomials

 c_0 is the set of all sequences $\{a_k\}$ for which $\{a_k\}$ converges to 0

 ℓ_1 is the set of all sequences $\{a_k\}$ for which the series $\sum_{k=1}^{\infty} |a_k|$ converges

 ℓ_2 is the set of all sequences $\{a_k\}$ for which the series $\sum_{k=1}^{\infty} |a_k|^2$ converges

 ℓ_{∞} is the set of all sequences $\{a_k\}$ for which $\{a_k\}$ is bounded

A metric space (X, d) consists of a set X and a real-valued function d defined on $X \times X$ that satisfies the following four properties.

- 1. $d(x, y) \ge 0$ for all $x, y \in X$.
- 2. d(x, y) = 0 if and only if x = y.
- 3. d(x,y) = d(y,x) for all $x, y \in X$.
- 4. $d(x,y) \le d(x,z) + d(z,y)$ for all $x, y, z \in X$.

The function d, which gives the distance between two points in X, is known as a metric.

A normed linear space X is a vector space X with a norm defined on it. A norm on a vector space X is a real-valued function defined on X with the following four properties:

- 1. $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in X$.
- 2. $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- 3. $||c \mathbf{x}|| = |c|||\mathbf{x}||$ for all $\mathbf{x} \in X$ and $c \in \mathbb{R}$.
- 4. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in X$.

A norm on X defines a metric on X via the definition $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

An inner product space X is a vector space X with an inner product defined on it. An inner product on X is a real-valued function defined on $X \times X$ with the following five properties:

- 1. $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ for all $\mathbf{x} \in X$.
- 2. $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- 3. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ for all $\mathbf{x}, \mathbf{y} \in X$.
- 4. $\langle c \mathbf{x}, \mathbf{y} \rangle = c \langle \mathbf{x}, \mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in X$ and $c \in \mathbb{R}$.
- 5. $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$.

An inner product on X defines a norm on X via the definition $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.

Every normed linear space is a metric space.

Every inner product space is a normed linear space and thus a metric space.

One metric on the set ℓ_{∞} is given by $d(\{a_k\}, \{b_k\}) = \sum_{k=1}^{\infty} \frac{|a_k - b_k|}{2^k}$. Another metric on the set ℓ_{∞} is given by $d(\{a_k\}, \{b_k\}) = \sum_{k=1}^{\infty} \frac{|a_k - b_k|}{2^k(1 + |a_k - b_k|)}$.

A norm on the set $\mathcal{C}([a, b])$ is given by $||x(t)|| = \max\{|x(t)| : t \in [a, b]\}$. Another norm on the set $\mathcal{C}([a, b])$ is given by $||x(t)|| = \sqrt{\int_a^b (x(t))^2 dt}$.

A norm on the set ℓ_1 is given by $||\{a_k\}|| = \sum_{k=1}^{\infty} |a_k|$.

An inner product on the set C([a, b]) is given by $\langle x(t), y(t) \rangle = \int_{a}^{b} x(t)y(t) dt$. This inner product generates the norm $||x(t)|| = \sqrt{\int_{a}^{b} (x(t))^2 dt}$.

An inner product on the set ℓ_2 is given by $\langle \{a_k\}, \{b_k\} \rangle = \sum_{k=1}^{\infty} a_k b_k$. This inner product generates the norm $\|\{a_k\}\| = \sqrt{\sum_{k=1}^{\infty} a_k^2}$.

Let $\{x_n\}$ be a sequence in a metric space (X, d). The sequence $\{x_n\}$ is a Cauchy sequence if for each $\epsilon > 0$ there exists a positive integer N such that $d(x_n, x_m) < \epsilon$ for all $m, n \ge N$.

A metric space (X, d) is a complete metric space if every Cauchy sequence in (X, d) converges to a point in X.

A Banach space is a normed linear space that is complete under the metric defined by its norm.

A Hilbert space is an inner product space that is complete under the metric defined by it inner product.

The metric $d(\{a_k\}, \{b_k\}) = \sum_{k=1}^{\infty} \frac{|a_k - b_k|}{2^k (1 + |a_k - b_k|)}$ on ℓ_{∞} does not come from a norm. The set $\mathcal{C}([a, b])$ with the norm $||x(t)|| = \max\{|x(t)| : t \in [a, b]\}$ is a Banach space. The set $\mathcal{C}([a, b])$ with the norm $||x(t)|| = \sqrt{\int_a^b (x(t))^2 dt}$ is not a Banach space. The set ℓ_2 with the inner product $\langle \{a_k\}, \{b_k\} \rangle = \sum_{k=1}^{\infty} a_k b_k$ is a Hilbert space. Cauchy-Schwarz Inequality:

In any inner product space, we have $|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\| \|\mathbf{y}\|$ for all \mathbf{x} and \mathbf{y} .

Assume that $\mathbf{y} \neq \mathbf{0}$ and let $c = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{y}, \mathbf{y} \rangle}$. We then have

$$0 \leq \|\mathbf{x} - c\,\mathbf{y}\|^2 = \langle \mathbf{x} - c\,\mathbf{y}, \mathbf{x} - c\,\mathbf{y} \rangle$$
$$= \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, c\,\mathbf{y} \rangle - \langle c\,\mathbf{y}, \mathbf{x} \rangle + \langle c\,\mathbf{y}, c\,\mathbf{y} \rangle$$
$$= \langle \mathbf{x}, \mathbf{x} \rangle - c\,\langle \mathbf{x}, \mathbf{y} \rangle - c\,(\langle \mathbf{x}, \mathbf{y} \rangle - c\,\langle \mathbf{y}, \mathbf{y} \rangle)$$
$$= \langle \mathbf{x}, \mathbf{x} \rangle - c\,\langle \mathbf{x}, \mathbf{y} \rangle$$
$$= \langle \mathbf{x}, \mathbf{x} \rangle - \frac{\langle \mathbf{x}, \mathbf{y} \rangle^2}{\langle \mathbf{y}, \mathbf{y} \rangle}$$
$$= \|\mathbf{x}\|^2 - \frac{\langle \mathbf{x}, \mathbf{y} \rangle^2}{\|\mathbf{y}\|^2}$$
$$= \frac{\|\mathbf{x}\|^2 \|\mathbf{y}\|^2 - \langle \mathbf{x}, \mathbf{y} \rangle^2}{\|\mathbf{y}\|^2}$$

and thus

$$\langle \mathbf{x}, \mathbf{y} \rangle^2 \leq \|\mathbf{x}\|^2 \|\mathbf{y}\|^2 \qquad \Leftrightarrow \qquad |\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\| \|\mathbf{y}\|.$$

Triangle Inequality:

In any inner product space, we have $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all \mathbf{x} and \mathbf{y} .

For vectors \mathbf{x} and \mathbf{y} , we have

$$\|\mathbf{x} + \mathbf{y}\|^{2} = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

= $\langle \mathbf{x}, \mathbf{x} \rangle + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$
 $\leq \langle \mathbf{x}, \mathbf{x} \rangle + 2 |\langle \mathbf{x}, \mathbf{y} \rangle| + \langle \mathbf{y}, \mathbf{y} \rangle$
= $\|\mathbf{x}\|^{2} + 2 |\langle \mathbf{x}, \mathbf{y} \rangle| + \|\mathbf{y}\|^{2}$
 $\leq \|\mathbf{x}\|^{2} + 2 \|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\|^{2}$
= $(\|\mathbf{x}\| + \|\mathbf{y}\|)^{2}$

and thus $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

In the inner product space $\mathcal{C}([0,6])$, find an orthogonal basis for span $\{1, t, t^2\}$.

In the inner product space $\mathcal{C}([1,2])$, find an orthogonal basis for span $\{t, \ln t\}$.

$$\begin{aligned} \langle t,t\rangle &= \int_{1}^{2} t^{2} dt = \frac{t^{3}}{3} \Big|_{1}^{2} = \frac{7}{3} \\ \langle t,\ln t\rangle &= \int_{1}^{2} t\ln t \, dt = \left(\frac{1}{2} t^{2} \ln t - \frac{1}{4} t^{2}\right) \Big|_{1}^{2} = 2\ln 2 - \frac{3}{4} \\ \ln t - \frac{\langle t,\ln t\rangle}{\langle t,t\rangle} t &= \ln t - \frac{2\ln 2 - \frac{3}{4}}{\frac{7}{3}} t = \ln t + \frac{3}{7} \left(\frac{3}{4} - 2\ln 2\right) t = \ln t + \left(\frac{9}{28} - \frac{6}{7} \ln 2\right) t \end{aligned}$$

An orthogonal basis is thus $\{t, 28 \ln t + (9 - 24 \ln 2) t\}$.