
Let {ck}∞k=0 be a sequence of real numbers and let a be a real number. A power series centered at

a is an expression of the form

∞∑
k=0

ck(x− a)k = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + c4(x− a)4 + · · · .

The constants ck are known as the coefficients of the power series and the number a is called the

center of the power series. A power series looks and behaves like an infinite degree polynomial.

Let f(x) =
∞∑
k=0

ck(x − a)k, where the power series has radius of convergence ρ > 0. Then f is

infinitely differentiable on (a− ρ, a+ ρ) and f (k)(a) = k! ck for each k ≥ 0.

Turning things around, we can start with an infinitely differentiable function f , find its derivatives,

then write the resulting power series

∞∑
k=0

f (k)(a)

k!
(x− a)k. (For many, but not all functions, this equals f(x).)

This series is called the Taylor series of f centered at a or, in the frequently occurring case in which

a = 0, the Maclaurin series of f . Three common Maclaurin series are

ex =

∞∑
k=0

1

k!
xk = 1 + x+

1

2
x2 +

1

6
x3 + · · ·

sinx =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 = x− 1

6
x3 +

1

120
x5 − 1

5040
x7 + · · ·

cosx =

∞∑
k=0

(−1)k

(2k)!
x2k = 1− 1

2
x2 +

1

24
x4 − 1

720
x6 + · · ·

An inner product on the set C([a, b]) is given by 〈x(t), y(t)〉 =

∫ b

a

x(t)y(t) dt.

The set {1, cos t, sin t, cos(2t), sin(2t), cos(3t), sin(3t), . . .} is an orthogonal basis for C([−π, π]).

A Fourier series is a series of the form

∞∑
n=0

an cos(nt) +

∞∑
n=1

bn sin(nt) = a0 + a1 cos t+ b1 sin t+ a2 cos(2t) + b2 sin(2t) + · · · .

Fourier series have much stranger behavior than power series. For example, the function f defined

by f(t) =

∞∑
n=1

1

2n
cos(3nt) is continuous on R but nowhere differentiable on R.

Since we have an orthogonal basis, it is easy to write down a formula for the coefficients (n ≥ 1):

an =

∫ π

−π
f(t) cos(nt) dt∫ π

−π
cos2(nt) dt

and bn =

∫ π

−π
f(t) sin(nt) dt∫ π

−π
sin2(nt) dt

.
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sin(x+ y) = sinx cos y + sin y cosx

sin(x− y) = sinx cos y − sin y cosx

2 sinx cos y = sin(x+ y) + sin(x− y)

cos(x+ y) = cosx cos y − sinx sin y

cos(x− y) = cosx cos y + sinx sin y

2 cosx cos y = cos(x+ y) + cos(x− y)

2 sinx sin y = cos(x− y)− cos(x+ y)

sin 2x = 2 sinx cosx

cos 2x = cos2 x− sin2 x

2 sin2 x = 1− cos 2x

2 cos2 x = 1 + cos 2x

∫ π

−π
sin(nt) dt = − 1

n
cos(nt)

∣∣∣π
−π

= − 1

n

(
(−1)n − (−1)n

)
= 0∫ π

−π
cos(nt) dt =

1

n
sin(nt)

∣∣∣π
−π

=
1

n

(
0− 0

)
= 0

2

∫ π

−π
sin(mt) cos(nt) dt =

∫ π

−π

(
sin((m+ n)t) + sin((m− n)t)

)
dt = 0

2

∫ π

−π
sin(mt) sin(nt) dt =

∫ π

−π

(
cos((m− n)t)− cos((m+ n)t)

)
dt = 0

2

∫ π

−π
cos(mt) cos(nt) dt =

∫ π

−π

(
cos((m+ n)t) + cos((m− n)t)

)
dt = 0∫ π

−π
sin2(nt) dt =

1

2

∫ π

−π

(
1− cos(2nt)

)
dt = π∫ π

−π
cos2(nt) dt =

1

2

∫ π

−π

(
1 + cos(2nt)

)
dt = π

For a continuous function f on [−π, π], it then follows that

f(t) =

∞∑
n=0

an cos(nt) +

∞∑
n=1

bn sin(nt) = a0 + a1 cos t+ b1 sin t+ a2 cos(2t) + b2 sin(2t) + · · · ,

where

a0 =
1

2π

∫ π

−π
f(t) dt, an =

1

π

∫ π

−π
f(t) cos(nt) dt, and bn =

1

π

∫ π

−π
f(t) sin(nt) dt.

A function f is even if f(−x) = f(x) for all x ∈ R.

A function f is odd if f(−x) = −f(x) for all x ∈ R.

The product of two even functions is an even function.

The product of two odd functions is an even function.

The product of an even function and an odd function is an odd function.

If f is an odd function and a > 0, then
∫ a
−a f(x) dx = 0.

If f is an even function and a > 0, then
∫ a
−a f(x) dx = 2

∫ a
0
f(x) dx.
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Find the Fourier series for the function f(t) = t on the interval [−π, π].

Noting that f is an odd function and using integration by parts, we find that∫ π

−π
t cos(nt) dt = 0 for all n ≥ 0;∫ π

−π
t sin(nt) dt = 2

∫ π

0

t sin(nt) dt = 2
(
− t
n

cos(nt)
∣∣∣π
0

+
1

n

∫ π

0

cos(nt) dt
)

= −2(−1)nπ

n

for all n ≥ 1. It follows that

t =

∞∑
n=1

2(−1)n+1

n
sin(nt) = 2 sin t− sin(2t) + 2

3 sin(3t)− 1
2 sin(4t) + · · · .

This equation is valid for all t in the interval (−π, π). In particular, when t = 1
2π, we find that

π

4
=

∞∑
n=1

(−1)n+1

n
sin(nπ/2)

=
1

1
sin(π/2)− 0 +

1

3
sin(3π/2)− 0 +

1

5
sin(5π/2)− 0 +

1

7
sin(7π/2) + · · ·

= 1− 1

3
+

1

5
− 1

7
+ · · · =

∞∑
n=1

(−1)n+1

2n− 1
.

Find the Fourier series for the function f(t) = t3 on the interval [−π, π].

Noting that f is an odd function and using integration by parts, we find that∫ π

−π
t3 cos(nt) dt = 0 for all n ≥ 0;∫ π

−π
t3 sin(nt) dt = 2

∫ π

0

t3 sin(nt) dt

= 2
(
− t

3

n
cos(nt)

∣∣∣π
0

+
3

n

∫ π

0

t2 cos(nt) dt
)

= −2(−1)nπ3

n
+

6

n
· 2(−1)nπ

n2
.

It follows that

t3 =
∞∑
n=1

(−1)n+1
(2π2

n
− 12

n3

)
sin(nt) = (2π2 − 12) sin t− (π2 − 3

2 ) sin(2t) + ( 2
3π

2 − 4
9 ) sin(3t)− · · · .

This equation is valid for all t in the interval (−π, π). In particular, when t = 1
2π, we find that

π3

8
= π2

∞∑
n=1

2(−1)n+1

n
sin(nπ/2)−

∞∑
n=1

12(−1)n+1

n3
sin(nπ/2)

= π2 · π
2
− 12

∞∑
n=1

(−1)n+1

n3
sin(nπ/2)

and thus

π3

32
=

∞∑
n=1

(−1)n+1

n3
sin(nπ/2) =

1

13
− 1

33
+

1

53
− 1

73
+ · · · =

∞∑
n=1

(−1)n+1

(2n− 1)3
.
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Find the Fourier series for the function f(t) =

{
1, if |t| ≤ π/2;
0, if |t| > π/2;

on the interval [−π, π].

Noting that f is an even function, we find that

∫ π

−π
f(t) sin(nt) dt = 0 for all n ≥ 1 and

∫ π

−π
f(t) dt = π;

∫ π

−π
f(t) cos(nt) dt = 2

∫ π/2

0

cos(nt) dt =
2

n
sin(nt)

∣∣∣π/2
0

=
2 sin(nπ/2)

n
=

{
2/n, if n = 1, 5, 9, 13, . . .;
−2/n, if n = 3, 7, 11, 15, . . .;

which we can write as
2(−1)n+1

2n− 1
.

It follows that

f(t) =
1

2
+

∞∑
n=1

2(−1)n+1

(2n− 1)π
cos((2n− 1)t) =

1

2
+

2

π

(
cos t− 1

3 cos(3t) + 1
5 cos(5t)− 1

7 cos(7t) + · · ·
)
.

This equation is valid for all t in the interval (−π, π) for which f is continuous. When t = 0, using

an earlier result, we find that series for f(0) does indeed equal 1. Let’s see what happens then

t = π/3. We hope to have

π

4
=

∞∑
n=1

(−1)n+1

(2n− 1)
cos( 1

3 (2n− 1)π).

Writing out the series, we have

cos( 1
3π)

1
− cos(π)

3
+

cos( 5
3π)

5
−

cos( 7
3π)

7
+

cos(3π)

9
−

cos( 11
3 π)

11
+

cos( 13
3 π)

13
− cos(5π)

15
+

cos( 17
3 π)

17
+ · · · ,

then using the values of cosine at π/3, π, and 5π/3, we obtain

∞∑
n=1

(−1)n+1

(2n− 1)
cos( 1

3 (2n− 1)π) =
1

2
+

1

3
+

1

10
− 1

14
− 1

9
− 1

22
+

1

26
+

1

15
+

1

34
− · · ·

=
1

2

(
1 +

1

5
− 1

7
− 1

11
+

1

13
+

1

17
− · · ·

)
+

1

3

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
+

1

2

(
−1

3
+

1

9
− 1

15
+

1

21
− · · ·

)
− 1

2

(
−1

3
+

1

9
− 1

15
+

1

21
− · · ·

)
=

1

2

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
+
(1

3
+

1

6

)(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
= 1− 1

3
+

1

5
− 1

7
+ · · · .

The sum of this series is indeed π/4 from our previous work.
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