0 . Find all values of x that satisfy the equation $2 x^{4}-7 x^{2}=20$.

Let $y=x^{2}$. Then $y \geq 0$ and $2 y^{2}-7 y-20=0$. By the quadratic formula, we have

$$
y=\frac{7 \pm \sqrt{49-4(2)(-20)}}{4}=\frac{1}{4}(7 \pm \sqrt{209})
$$

Since $y \geq 0$, we can only use the plus sign value. It follows that

$$
x^{2}=y=\frac{1}{4}(7+\sqrt{209}) \quad \text { and thus } \quad x= \pm \frac{1}{2} \sqrt{7+\sqrt{209}}
$$

The solutions to the equation are $\frac{1}{2} \sqrt{7+\sqrt{209}}$ and $-\frac{1}{2} \sqrt{7+\sqrt{209}}$.

1. Find all values of x that satisfy the equation $2 x=1+\frac{4}{x}$.

$$
\begin{aligned}
& 2 x=1+\frac{4}{x} \\
& 2 x^{2}=x+4 \\
& 2 x^{2}-x-4=0
\end{aligned}
$$

use quadratic formula

$$
x=\frac{1 \pm \sqrt{1+32}}{4}
$$

The volutions are $x=\frac{1}{4}(1 \pm \sqrt{33})$.
2. Find all values of x that satisfy the equation $x^{4}=2 x^{2}+1$.

Let $y=x^{2}$, then $y \geq 0$ and $y^{2}=2 y+1$.

$$
\begin{gathered}
y^{2}-2 y+1=1+1 \\
(y-1)^{2}=2 \\
y-1= \pm \sqrt{2} \\
y=1 \pm \sqrt{2} \\
x^{2}=y=1+\sqrt{2}
\end{gathered}
$$

complete the soguare

The solutions are $x= \pm \sqrt{1+\sqrt{2}}$.
3. Find all values of x that satisfy the equation $x-3 \sqrt{x}=10$.
x. Let $y=\sqrt{x}$. Then $y \geq 0$ and

$$
\begin{aligned}
& y^{2}-3 y-10=0 \\
& (y-5)(y+2)=0 \\
& y=5 \text { since } y=-2 \text { fails } \\
& \sqrt{x}=5 \Rightarrow x=25
\end{aligned}
$$

II $x-10=3 \sqrt{x}$, need $x \geq 10$

$$
\begin{aligned}
& (x-10)^{2}=9 x \\
& x^{2}-29 x+100=0 \\
& (x-25)(x-4)=0
\end{aligned}
$$

$x=25$ only valid solution

The only volution to the equation is $x=25$.
4. Find all values of x that satisfy the equation $25-8 e^{-x / 3}=23$.
use properties of $l n$

$$
\begin{aligned}
& e^{-x / 3}=\frac{1}{4} \quad e^{x / 3}=4 \\
& -\frac{x}{3}=\ln 1 / 4 \\
& \frac{x}{3}=\ln 4=\ln 2^{2}=2 \ln y \\
& x=-3 \ln 1 / 4 \\
& x=6 \ln 2 \\
& x=6 \ln 2 \\
& \rightarrow=3 \ln (1 / 4)^{-1}=3 \ln 4
\end{aligned}
$$

The solution is $x=6 \ln 2$.
5. Find all values of x that satisfy the equation $e^{x}=\frac{8 e^{x}-12}{e^{x}}$.

Let $y=e^{x}$. Then $y>0$ and

$$
\begin{aligned}
& y=\frac{8 y-12}{y} \Rightarrow \quad \begin{array}{l}
y^{2}-8 y+12
\end{array}=0 \\
&(y-2)(y-6)=0 \\
& y=2 \text { or } y
\end{aligned}=6
$$

The solutions are $\ln 2$ and $\ln 6$.

