Math 126

Homework Assignment 0

Fall 2020

0. Find all values of x that satisfy the equation $2x^4 - 7x^2 = 20$.

Let $y = x^2$. Then $y \ge 0$ and $2y^2 - 7y - 20 = 0$. By the quadratic formula, we have

$$y = \frac{7 \pm \sqrt{49 - 4(2)(-20)}}{4} = \frac{1}{4} (7 \pm \sqrt{209}).$$

Since $y \geq 0$, we can only use the plus sign value. It follows that

$$x^2 = y = \frac{1}{4} (7 + \sqrt{209})$$
 and thus $x = \pm \frac{1}{2} \sqrt{7 + \sqrt{209}}$.

The solutions to the equation are $\frac{1}{2}\sqrt{7+\sqrt{209}}$ and $-\frac{1}{2}\sqrt{7+\sqrt{209}}$.

1. Find all values of x that satisfy the equation $2x = 1 + \frac{4}{x}$.

$$2x = 1 + \frac{4}{x}$$

$$2x^2 = x + 4$$

use quadratic formula

$$2x^{2} = x + 4$$
 $x = \frac{1 + \sqrt{1 + 32}}{4}$ $2x^{2} - x - 4 = 0$

The volutions are $x = \frac{1}{4}(1 \pm \sqrt{33})$.

2. Find all values of x that satisfy the equation $x^4 = 2x^2 + 1$.

Set $y = x^2$, then $y \ge 0$ and $y^2 = 2y + 1$.

 $(\gamma - 1)^2 = 2$

$$y-1=\pm \sqrt{2}$$
 $y=1\pm \sqrt{2}$
 $1-\sqrt{2} < 0$ so must reject

x2= y = 1+12

The solutions are
$$x = \pm \sqrt{1 + \sqrt{2}}$$
.

3. Find all values of x that satisfy the equation $x - 3\sqrt{x} = 10$.

I. Set
$$y = 1\%$$
. Then $y \ge 0$ and $y^2 - 3y - 10 = 0$
 $(y - 5)(y + 2) = 0$
 $y = 5$ since $y = -2$ fails $y = 5 \Rightarrow x = 25$

I
$$x-10 = 37x$$
, need $x \ge 10$
 $(x-10)^2 = 9x$
 $x^2 - 29x + 100 = 0$
 $(x-25)(x-4) = 0$
 $x = 25$ only valid volution

The only volution to the equation is X = 25.

4. Find all values of x that satisfy the equation $25 - 8e^{-x/3} = 23$. $25 - 8e^{-x/3}$

tion
$$25 - 8e^{-x/3} = 23$$
.

OR
$$\frac{1}{x/3} = \frac{1}{4}$$

$$\frac{x}{3} = 4$$

$$\frac{x}{3} = \ln 4 = \ln 2 = 2 \ln 2$$

$$x = 6 \ln 2$$

$$\Rightarrow = 3 \ln (4)^{-1} = 3 \ln 4$$

The rolution is x = 6 ln 2.

- = ln /4 x = - 3 ln /4

x = Colna

5. Find all values of x that satisfy the equation $e^x = \frac{8e^x - 12}{e^x}$.

$$3et \ \gamma = e^{x}. \ Then \ \gamma > 0 \ and$$

$$\gamma = \frac{8\gamma - 12}{\gamma} \Rightarrow \gamma^{2} - 8\gamma + 12 = 0$$

$$(\gamma - 2)(\gamma - 6) = 0$$

$$\gamma = 2 \ \text{or} \ \gamma = 6$$

$$\chi = \ln 2 \ \text{or} \ \chi = \ln 6$$

The volutions are In 2 and In 6.