1. Find an equation for the line tangent to the graph of $y = 3x^2 + \frac{4}{x}$ when x = 1.

$$y = 3x^2 + \frac{4}{x}$$

when $x = 1$
 $\frac{dy}{dx} = 6x - \frac{4}{x^2}$

when $x = 1$
 $\frac{dy}{dx} = 2$

point $(1, 7)$, alope 2
 $y - 7 = 2(x - 1)$

On equation for the tangent line is y = 2x + 5.

2. Evaluate
$$\lim_{x\to\infty} \frac{10x^2 + 2x + 9}{\sqrt{5x^4 + 3x^2 + 7}}$$
 highest power an denomination as x^3 $\lim_{x\to\infty} \frac{10x^2 + 2x + 9}{\sqrt{5x^4 + 3x^2 + 7}} = \lim_{x\to\infty} \frac{10x^2 + 2x + 9}{\sqrt{5x^4 + 3x^2 + 7}} \cdot \frac{10x^2 + 2x + 9}{\sqrt{x^2 + 3x^2 + 7}} \cdot \frac{10x^2 + 2x + 9}{\sqrt{x^2 + 3x^2 + 7}} = \lim_{x\to\infty} \frac{10x^2 + 2x + 9}{\sqrt{5x^4 + 3x^2 + 7}} \cdot \frac{10x^2 + 2x + 9}{\sqrt{x^2 + 3x^2 + 7}} \cdot \frac{10x^2$

(note that the equation is a sentence.)

3. Use the definition of the derivative to find the derivative of the function $f(x) = \frac{1}{x}$.

$$f'(x) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x}$$

$$= \lim_{y \to x} \frac{1}{y - x}$$

$$= \lim_{x \to x} \frac{1}{x + x} - \frac{1}{x}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

$$= \lim_{x \to x} \frac{1}{x - (x + x)}$$

4. Find and simplify the derivative of the function f defined by $f(x) = \frac{\sqrt{x^2 + 6}}{x}$.

Using the quotient rule and chain rule, we have $f'(x) = \frac{x \cdot \frac{1}{2}(x^2 + 6)^{\frac{1}{2}} \cdot 2x - (x^2 + 6)^{\frac{1}{2}}}{x^2}$ $= \frac{(x^2 + 6)^{-\frac{1}{2}} \left[x^2 - (x^2 + 6) \right]}{x^2}$ $= \frac{-6}{x^2 + 6}$