1. Find an equation for the line tangent to the graph of $y=3 x^{2}+\frac{4}{x}$ when $x=1$.

$$
\begin{array}{ll}
y=3 x^{2}+\frac{4}{x} & y=7 \\
\frac{d y}{d x}=6 x-\frac{4}{x^{2}} & \text { when } x=1 \\
\text { point }(1,7), \text { slope } 2 & \frac{d y}{d x}=2
\end{array}
$$

An equation for the tangent lime us $Y=2 x+5$.
2. Evaluate $\lim _{x \rightarrow \infty} \frac{10 x^{2}+2 x+9}{\sqrt{5 x^{4}+3 x^{2}+7}}$. highest power un denominator us x^{2}

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{10 x^{2}+2 x+9}{\sqrt{5 x^{4}+3 x^{2}+7}} & =\lim _{x \rightarrow \infty} \frac{10 x^{2}+2 x+9}{\sqrt{5 x^{4}+3 x^{2}+7}} \cdot \frac{1 / x^{2}}{1 / x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{10+\frac{2}{x}+\frac{9}{x^{2}}}{\sqrt{5+\frac{3}{x^{2}}+\frac{7}{x^{4}}}} \\
& =\frac{10}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \\
& =2 \sqrt{5}
\end{aligned}
$$

(mote that the equation is a sentence.)
3. Use the definition of the derivative to find the derivative of the function $f(x)=\frac{1}{x}$.

$$
\begin{aligned}
f_{f}^{\prime}(x) & =\lim _{v \rightarrow x} \frac{f(v)-f(x)}{v-x} \\
& =\lim _{v \rightarrow x} \frac{\frac{1}{v}-\frac{1}{x}}{v-x} \\
& =\lim _{v \rightarrow x} \frac{f^{\prime}(x)}{}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h x(v-x)} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{v \rightarrow x} \frac{-1}{v x} \\
& =-\frac{1}{x^{2}}
\end{aligned} \quad \begin{array}{ll}
h \rightarrow 0 \\
& \frac{1}{h} \frac{x-(x+h)}{(x+h) x} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x+h) x} \\
& =-\frac{1}{x^{2}}
\end{array}
$$

4. Find and simplify the derivative of the function f defined by $f(x)=\frac{\sqrt{x^{2}+6}}{x}$.

Using the quotient sure and choir rule, we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x \cdot \frac{1}{2}\left(x^{2}+6\right)^{-1 / 2} \cdot 2 x-\left(x^{2}+6\right)^{1 / 2} \cdot 1}{x^{2}} \\
& =\frac{\left(x^{2}+6\right)^{-\frac{1}{2}}\left[x^{2}-\left(x^{2}+6\right)\right]}{x^{2}} \\
& =\frac{-6}{x^{2} \sqrt{x^{2}+6}}
\end{aligned}
$$

