1. Use simple facts from geometry to find the area under the graph of each function and above the x-axis on the given interval. Include a sketch of the region whose area is being computed.
a) $f(x)=8-|x-2|$ on $[0,6]$

two trapezoids

$$
\begin{aligned}
& A_{I}=\frac{1}{2}(6+8) \cdot 2=14 \\
& A_{I}=\frac{1}{2}(8+4) \cdot 4=24
\end{aligned}
$$

total area 38

The area of this region is 38 square units.
b) $g(x)=\sqrt{8 x-x^{2}}$ on $[0,8]$

region is a semicircle so $A=\frac{1}{2} \cdot \pi \cdot 4^{2}=8 \pi$
The area of the region is 8π square units.
2. Use the definition of the integral to express the given integral as a limit of a sum.

$$
\begin{aligned}
& \quad \text { a) } \int_{1}^{3}\left(x^{2}+6 x\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\left(1+\frac{2 i}{n}\right)^{2}+6\left(1+\frac{2 i}{n}\right)\right) \frac{2}{n} \\
& \begin{array}{l}
b=1 \\
b=\{ \\
\frac{b-a}{n}=\frac{2}{n} \\
a+i \cdot \frac{b-a}{n}=1+\frac{2 i}{n}
\end{array}
\end{aligned}
$$

this becomes x
$a=0$
$b=\frac{\pi}{2}$
b) $\int_{0}^{\pi / 2} \cos x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} \cos \left(\frac{\pi i}{2 n}\right) \frac{\pi}{2 n}$

$$
\frac{b-a}{n}=\frac{\pi}{2 n}
$$

$a+i \cdot \frac{b-a}{n}=\frac{\pi i}{2 n}$
this replacer x in the function
3. Use the definition of the integral to express the given limit as an integral. For part (a), give two different integral representations for the limit. Start with a little bit of factoring for part (b).
a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{4+\frac{3 i}{n}} \cdot \frac{3}{n}$
τ

$a+i \frac{b-a}{n}=4+\frac{3 i}{n}$
this us the x value

$f(x)=\sqrt{x}$

The limiturepresents $\int_{4}^{7} \sqrt{x} d x$ and also $\int_{0}^{3} \sqrt{4+x} d x$.
b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{n}{n^{2}+i^{2}}$

$$
\begin{aligned}
& \frac{n}{n^{2}+i^{2}}=\frac{n}{n^{2}\left(1+\frac{i^{2}}{n^{2}}\right)}=\frac{1}{1+\left(\frac{i}{n}\right)^{2}} \cdot \frac{1}{\sim n} \quad \begin{array}{l}
b-a=1 \\
a=0, b=1 \\
a+i \cdot \frac{b-a}{n}=\frac{i}{n} \text { (x value) } \\
f(x)=\frac{1}{1+x^{2}}
\end{array} \\
& \text { dit follows that }
\end{aligned}
$$

$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{n}{n^{2}+i^{2}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{1+\left(\frac{i}{n}\right)^{2}} \cdot \overbrace{n}^{n}=\int_{0}^{1} \frac{1}{1+x^{2}} d x$.

