1. Evaluate $\int_{-1}^{1}\left(4|x|+6 \sqrt{1-x^{2}}\right) d x$.

$$
\int_{-1}^{1}\left(4|x|+6 \sqrt{1-x^{2}}\right) d x=4 \int_{-1}^{1}|x| d x+6 \int_{-1}^{1} \sqrt{1-x^{2}} d x
$$

$\int_{-1}^{1}|x| d x$ us the area
 rutich is 1
$\int_{-1}^{1} \sqrt{1-x^{2}} d x$ ss the ares $\frac{1 / 1111 \lambda}{-1} \frac{x^{2}}{1}+y^{2}=1$
which is $\frac{1}{2} \pi$
so we have $4 \cdot 1+6 \cdot \frac{\pi}{2}=4+3 \pi$
The ralue of the integral is $4+3 \pi$.
2. Referring to Exercise 4 in Section 2.5, find the value of $\int_{1}^{2}(3 f(x)-g(x)) d x$.

$$
\begin{aligned}
& \int_{1}^{3} f(x) d x=6 \\
& \Rightarrow \int_{1}^{2} f(x) d x=\int_{1}^{3} f(x) d x-\int_{2}^{3} f(x) d x=4 \\
& \int_{2}^{3} f(x) d x=2 \\
& \int_{1}^{3} q(x) d x=10 \Rightarrow \int_{1}^{2} q(x) d x=\int_{1}^{3} g(x) d x-\int_{2}^{3} g(x) d x=13 \\
& \int_{2}^{3} g(x) d x=-3 \\
& \text { Therefore } \int_{1}^{2}(3 f(x)-g(x)) d x=3 \int_{1}^{2} f(x) d x-\int_{1}^{2} g(x) d x \\
& =2 \cdot 4-13 \\
& =-1
\end{aligned}
$$

3. Without evaluating either of the integrals, determine which integral is larger and explain why.

$$
\int_{1}^{6} \sqrt[3]{x^{6}+x+1} d x, \quad \int_{1}^{6} x^{2} d x
$$

Since $\sqrt[3]{x^{6}+x+1}>\sqrt[3]{x^{6}}=x^{2}$ for all $x \operatorname{in}[1,6]$, we know that $\int_{1}^{6} \sqrt[3]{x^{6}+x+1} d x>\int_{1}^{6} x^{2} d x$.
(see property (6) of integrals in section 2.5.)
4. Suppose that $v(t)=7-3 t$ gives the velocity in meters per second of a particle at time t seconds. Find the total distance traveled by the particle during the time interval $0 \leq t \leq 6$.

$$
\begin{aligned}
& \text { distance }=\int_{0}^{6}|v(t)| d t=\int_{0}^{6}|7-3 t| d t+11 \\
& \text { interferes untequal as area } \\
& \text { area }=\frac{1}{2} \cdot 7 \cdot \frac{7}{3}+\frac{1}{2} \cdot \frac{11}{3} \cdot 11 \\
& =\frac{49+12 \mid}{6}=\frac{170}{6}=\frac{85}{3} \\
& S_{0}^{6}|7-3 t| d t=\frac{85}{3}
\end{aligned}
$$

The particle travels $\frac{85}{3}$ meters during the time interval $0 \leq t \leq 6$ seconds.

