1. Find the derivative of the function f defined by $f(x)=\int_{0}^{3 x^{2}} \ln \left(1+t^{2}\right) d t$.

Using the FTC and the chain rule, we find that

$$
\begin{aligned}
f^{\prime}(x) & =\ln \left(1+\left(3 x^{2}\right)^{2}\right) \cdot 6 x \\
& =6 x \ln \left(1+9 x^{4}\right)
\end{aligned}
$$

2. Determine $F^{\prime \prime}(\pi / 18)$ given that $F(x)=\int_{x}^{2 \pi} f(t) d t$ and $f(x)=\int_{1}^{3 x} \frac{\sin t}{t} d t$.

$$
\begin{aligned}
F(x)=-\int_{2 \pi}^{x} f(t) d t & f^{\prime}(x) & =\frac{\sin (3 x)}{3 x} \cdot 3 \text { bf } F T C \\
F^{\prime}(x)=-f(x) \text { bf } F \tau C & & =\frac{\sin (3 x)}{x}
\end{aligned}
$$

$$
F^{\prime \prime}(x)=-f^{\prime}(x)
$$

at follows that $F^{\prime \prime}(x)=-\frac{\sin (3 x)}{x}$ and thus

$$
F^{\prime \prime}\left(\frac{\pi}{18}\right)=-\frac{\sin (\pi / 6)}{\pi / 18}=-\frac{18}{\pi} \cdot \frac{1}{2}=-\frac{9}{\pi} .
$$

3. Evaluate $\lim _{x \rightarrow 0} \frac{1}{x^{4}} \int_{0}^{x} \sin \left(6 t^{3}\right) d t$.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1}{x^{4}} \int_{0}^{x} \sin \left(6 x^{3}\right) d t=\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \sin \left(6 t^{3}\right) d t}{x^{4}} \quad \frac{0}{0} \text { form } \\
& =\lim _{x \rightarrow 0} \frac{\operatorname{sen}\left(6 x^{3}\right)}{4 x^{3}} \quad \text { L'Hopertsi's rule } \\
& =\lim _{x \rightarrow 0} \frac{18 x^{2} \cos \left(6 x^{3}\right)}{12 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{3}{2} \cos \left(6 x^{3}\right) \quad \cos 0=1 \\
& =\frac{3}{2} \text {. } \\
& \text { L'Hopital's rule } \\
& \cos 0=1
\end{aligned}
$$

4. Find an integral expression for a function f such that $f(4)=0$ and $f^{\prime}(x)=e^{-2 x^{2}}$.

Oof the FTC, the function $f(x)=\int_{4}^{x} e^{-2 t^{2}} d t$ has the desired properties.

