1. Evaluate $\int_{2}^{4} \frac{8}{x^{3}} d x$. Buy the $F T C$, wee hare

$$
\int_{2}^{4} \frac{8}{x^{3}} d x=-\left.\frac{4}{x^{2}}\right|_{2} ^{4}=-\frac{1}{4}-(-1)=\frac{3}{4} \cdot
$$

$$
\left[8 x^{-3} \rightarrow \frac{8}{-2} x^{-2}=-4 x^{-2}\right]
$$

2. Evaluate $\int_{0}^{1}\left(2 x^{2}+\sqrt[3]{x}\right) d x$.

$$
\begin{aligned}
\int_{0}^{1}\left(2 x^{2}+x^{1 / 3}\right) d x & =\left.\left(\frac{2}{3} x^{3}+\frac{3}{4} x^{4 / 3}\right)\right|_{0} ^{1} \\
& =\frac{2}{3}+\frac{3}{4} \\
& =\frac{17}{12}
\end{aligned}
$$

3. Evaluate $\int_{0}^{4} \frac{3}{x+4} d x$. Using the $F T C$,

$$
\begin{aligned}
\int_{0}^{4} \frac{3}{x+4} d x & =\left.3 \ln |x+4|\right|_{0} ^{4} \\
& =3(\ln 8-\ln 4) \\
& =3 \ln 2
\end{aligned}
$$

4. Evaluate $\int_{0}^{3} 8 \sqrt{9-x^{2}} d x$. (Please think first.)

$$
\begin{aligned}
\int_{0}^{3} 8 \sqrt{9-x^{2}} d x & =8 \int_{0}^{3} \sqrt{9-x^{2}} d x \\
& =8 \cdot \frac{1}{4} \pi \cdot 3^{2} \\
& =18 \pi
\end{aligned}
$$

use area
 of the circle $x^{2}+y^{2}=9$
5. Find the area of the region under the curve $y=4 /\left(1+x^{2}\right)$ and above the x-axis on the interval $[-1,1]$.

$$
\begin{aligned}
A & =\int_{-1}^{1} \frac{4}{1+x^{2}} d x \\
& =2 \int_{0}^{1} \frac{4}{1+x^{2}} d x \\
& =\left.8 \arctan x\right|_{0} ^{1} \\
& =8\left(\frac{\pi}{4}-0\right) \\
& =2 \pi
\end{aligned}
$$

The area under the curse is 2π square unite.
6. Create and solve your own simple "evaluate an integral" problem.
many options here for variety, maybe one using e^{x} or $\sin (2 x)$, etc

