1. Evaluate $\int \frac{24}{(3 x+1)^{3}} d x$.
guess: $(3 x+1)^{-2}$
check: $\frac{d}{d x}(3 x+1)^{-2}=-2(3 x+1)^{-3} \cdot 3=\frac{-6}{(3 x+1)^{3}}$
need (-4)

$$
\int \frac{24}{(3 x+1)^{3}} d x=\frac{-4}{(3 x+1)^{2}}+C
$$

2. Evaluate $\int \frac{6}{\sqrt{4 x+7}} d x$.
guess: $(4 x+7)^{1 / 2}$
check: $\frac{d}{d x}(4 x+7)^{1 / 2}=\frac{1}{2}(4 x+7)^{-1 / 2} \cdot 4=\frac{2}{\sqrt{4 x+7}}$
need • ३

$$
\int \frac{6}{\sqrt{4 x+7}} d x=3 \sqrt{4 x+7}+C
$$

3. Evaluate $\int_{0}^{1} \frac{8 x+4}{x^{2}+x+1} d x$.

Using mental guess and check to ford an antiderisrative,

$$
\int_{0}^{1} \frac{8 x+4}{x^{2}+x+1} d x=\left.4 \ln \left|x^{2}+x+1\right|\right|_{0} ^{1}=4 \ln 3 . \quad[\ln 1=0]
$$

4. Evaluate $\int_{0}^{2}(2 x-3) \sqrt{4-x^{2}} d x$. (Carefully use the distributive property to split the integral into two integrals, then think clearly about the best way to evaluate each of the integrals.)

$$
\int_{0}^{2}(2 x-3) \sqrt{4-x^{2}} d x=\int_{0}^{2} 2 x \sqrt{4-x^{2}} d x-3 \int_{0}^{2} \sqrt{4-x^{2}} d x
$$

do each integral separately

$$
\int_{0}^{2} 2 x\left(4-x^{2}\right)^{1 / 2} d x=-\left.\frac{2}{3}\left(4-x^{2}\right)^{3 / 2}\right|_{0} ^{2}=0-\left(-\frac{2}{3} \cdot 4^{3 / 2}\right)=\frac{16}{3}
$$

$\left[-\frac{2}{3} \cdot \frac{3}{2} \cdot\left(4-x^{2}\right)^{1 / 2}(-2 x)\right.$ for mental guess and check $]$ $\int_{0}^{2} \sqrt{4-x^{2}} d x$ represents area

$$
\frac{1}{4} \cdot \pi \cdot 2^{2}=\pi
$$

It follow that

$$
\int_{0}^{2}(2 x-3) \sqrt{4-x^{2}} d x=\frac{16}{3}-3 \pi
$$

