1. Find the area of the region bounded by the curves $y=x^{4}$ and $y=a^{3} x$, where $a$ is a positive constant.


$$
\begin{gathered}
x^{4}=a^{3} x \\
x\left(x^{3}-a^{3}\right)=0
\end{gathered}
$$

$x=0, x=a$ when the curreesmeet

$$
A=\int_{0}^{a}\left(a^{3} x-x^{4}\right) d x=\left.\left(\frac{1}{2} a^{3} x^{2}-\frac{1}{5} x^{5}\right)\right|_{0} ^{a}=\left(\frac{1}{2}-\frac{1}{5}\right) a^{5}=\frac{3}{10} a^{5}
$$

The area of the bounded region is $\frac{3}{10} a^{5}$ square units.
2. Find the area of the region bounded by the curves $y=e^{2 x}, y=e^{x / 2}$, and $y=4$. Sketch a careful graph and ponder ways to set up the integral before proceeding to evaluate the integral.


$$
\begin{aligned}
& y=e^{2 x} \text { upper } \\
& x=\frac{1}{2} \ln y \text { left } \\
& y=e^{x / 2} \text { lower } \\
& x=2 \ln y \text { right }
\end{aligned}
$$

$$
\begin{aligned}
A & =\int_{1}^{4}\left(2 \ln y-\frac{1}{2} \ln y\right) d y=\frac{3}{2} \int_{1}^{4} \ln y d y \\
& =\left.\frac{3}{2}(y \ln y-y)\right|_{1} ^{4} \\
& =\frac{3}{2}((4 \ln 2-4)-(0-1)) \\
& =\frac{3}{2}(8 \ln 2-3)=12 \ln 2-\frac{9}{2} \approx 3.82
\end{aligned}
$$

$$
[\text { from last oust] }
$$

The area of the region us $12 \ln 2-\frac{9}{2}$ square units.
3. Let $a$ be a positive constant. Find the area of the region bounded by the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ and the coordinate axes. If necessary, use an electronic device to obtain a graph of the curve; include a sketch of the region as part of your solution.


$$
\begin{aligned}
\sqrt{x}+\sqrt{y} & =\sqrt{a} \\
\sqrt{y} & =\sqrt{a}-\sqrt{x} \\
y & =a-2 \sqrt{a} \sqrt{x}+x
\end{aligned}
$$

$$
\begin{aligned}
A & =\int_{0}^{a}(a-2 \sqrt{a} \sqrt{x}+x) d x=\left.\left(a x-\frac{4}{3} \sqrt{a} x^{3 / 2}+\frac{1}{2} x^{2}\right)\right|_{0} ^{a} \\
& =a^{2}-\frac{4}{3} a^{2}+\frac{1}{2} a^{2}=\frac{1}{6} a^{2}
\end{aligned}
$$

The area of the region is $\frac{a^{2}}{6}$ square units.

