1. Let R be the region under the graph of $y=8 / x^{2}$ and above the x-axis on the interval $[1,4]$. Find the volume of the solid that is generated when R is revolved around the x-axis.

crone sections are disks, radius us $\frac{8}{x^{2}}$

$$
\begin{aligned}
& 11 \\
V & =\int_{1}^{4} \pi\left(\frac{8}{x^{2}}\right)^{2} d x=64 \pi \int_{1}^{4} \frac{1}{x^{4}} d x \\
& =64 \pi\left(-\frac{1}{3}\right)\left(\left.\frac{1}{x^{3}}\right|_{1} ^{4}\right)=64 \pi\left(-\frac{1}{3}\right)\left(\frac{1}{64}-1\right)=-\frac{1}{3} \pi(1-64)=\frac{63}{3} \pi
\end{aligned}
$$

The volume of the generated solid us 21 is cubrournts.
2. Let a be a positive constant. Suppose that the base of a solid is the region bounded by the curves $y=x^{2}$ and $y=a x$ and that each cross section of the solid taken perpendicular to the x-axis is a semicircle. Find the volume of this solid.

$$
\begin{aligned}
V & =\int_{0}^{a} \frac{1}{2} \pi\left(\frac{a x-x^{2}}{2}\right)^{2} d x=\frac{\pi}{8} \int_{0}^{a}\left(a^{2} x^{2}-2 a x^{3}+x^{4}\right) d x \\
& =\left.\frac{\pi}{8}\left(\frac{1}{3} a^{2} x^{3}-\frac{1}{2} a x^{4}+\frac{1}{5} x^{5}\right)\right|_{0} ^{a}=\frac{\pi}{8} a^{5}\left(\frac{1}{3}-\frac{1}{2}+\frac{1}{5}\right)=\frac{\pi}{8} \cdot \frac{1}{30} a^{5}
\end{aligned}
$$

The relume of the soled is $\frac{\pi a^{5}}{240}$ cutie units.
3. Let R be the region bounded by the curves $y=x^{2}$ and $y=4$. Find the volume of the solid that is generated when R is revolved around (a) the line $x=3$, (b) the line $y=4$.

around $x=3$, get uroshers
$3+\sqrt{y}$ outer radius
$z-\sqrt{y}$ inner radius
around $y=4$, get dicker
radus is $y=4-x^{2}$

$$
\begin{aligned}
V_{x=3} & =\int_{0}^{4}\left(\pi(3+\sqrt{y})^{2}-\pi(z-\sqrt{y})^{2}\right) d y \\
& =\pi \int_{0}^{4} 12 \sqrt{y} d x=\left.\pi \cdot 8 y^{3 / 2}\right|_{0} ^{4}=64 \pi
\end{aligned}
$$

The volume of the solid when R us revolved around $x=3$ us 64π cubrounits.

$$
\begin{aligned}
V_{y}=4 & =\int_{-2}^{2} \pi\left(4-x^{2}\right)^{2} d x=2 \pi \int_{0}^{2}\left(16-8 x^{2}+x^{4}\right) d x \quad[\text { note symmetry }] \\
& =\left.2 \pi\left(16 x-\frac{8}{3} x^{3}+\frac{1}{5} x^{5}\right)\right|_{0} ^{2}=2 \pi \cdot 32\left(1-\frac{2}{3}+\frac{1}{5}\right)=64 \pi \cdot \frac{8}{15}=\frac{512 \pi}{15}
\end{aligned}
$$

The relume of the solid when Rus resolved around $y=4$ is $\frac{512 \pi}{15}$ cubic units.

