1. Let $R$ be the region under the graph of $y=\cos x$ and above the $x$-axis on the interval $[0, \pi / 2]$. Find the volume of the solid that is generated when $R$ is revolved around the $y$-axis.


$$
\begin{aligned}
V & =\int_{0}^{\pi / 2} 2 \pi x \cos x d x \\
& =\left.2 \pi(x \sin x+\cos x)\right|_{0} ^{\pi / 2} \\
& =2 \pi\left(\frac{\pi}{2}-1\right)=\pi(\pi-2)
\end{aligned}
$$

The volume of the solid is $\pi^{2}-2 \pi$ cubic units.
2. Let $R$ be the region under the graph of $y=2 x^{2}$ and above the $x$-axis on the interval $[0,3]$. Set up, but do not evaluate, an integral that represents the volume of the solid that is generated when $R$ is revolved around (a) the line $x=3$, (b) the line $y=20$, (c) the line $x=-1$, and (d) the line $y=-4$.

3. A cylindrical hole of radius $r$ is bored through the center of a sphere with radius $R>r$. The remaining solid resembles a bead since it has a flat top and bottom with a hole through the middle. Find the volume of the bead.


$$
\begin{aligned}
V & =\int_{r}^{R} 2 \pi x 2 \sqrt{R^{2}-x^{2}} d x \\
& =-\left.\frac{4 \pi}{2}\left(R^{2}-x^{2}\right)^{3 / 2}\right|_{r} \\
& =\frac{4 \pi}{3}\left(R^{2}-r^{2}\right)^{3 / 2}
\end{aligned}
$$

[mental guess and check]
[ note $r=0$ gives expected result]
The volume of the bead is $\frac{4 \pi}{3}\left(R^{2}-r^{2}\right)^{3 / 2}$ cubic units.
If we want this to be half the volume of the sphere, then $r$ mustiatuffy

$$
\begin{aligned}
\frac{4 \pi}{3}\left(R^{2}-r^{2}\right)^{3 / 2}=\frac{1}{2} \cdot \frac{4 \pi}{3} R^{3} & \Rightarrow\left(R^{2}-r^{2}\right)^{3 / 2}=\frac{1}{2} R^{3} \\
& \Rightarrow R^{2}-r^{2}=\left(\frac{1}{2}\right)^{2 / 3} R^{2} \\
& \Rightarrow r^{2}=\left(1-\frac{1}{\sqrt[3]{4}}\right) R^{2} \\
& \Rightarrow r=\sqrt{1-\frac{1}{\sqrt[3]{4}}} R \\
& \approx 0.6083
\end{aligned}
$$

