1. Find the center of mass of the region bounded by $y=x^{2}$ and $y=a x$, where a is a positive constant.

$$
\begin{aligned}
& \left(a x-x^{2}\right) d x \\
& \left(\sqrt{y}-\frac{y}{a}\right) d y
\end{aligned}
$$

$$
\begin{aligned}
\bar{x} & =\frac{\int x d m}{\int d m}=\frac{\int_{0}^{a} x \rho\left(a x-x^{2}\right) d x}{\int_{0}^{a} \rho\left(a x-x^{2}\right) d x}=\frac{\int_{0}^{a}\left(a x^{2}-x^{3}\right) d x}{\int_{0}^{a}\left(a x-x^{2}\right) d x} \\
& =\frac{\left.\left(\frac{1}{3} a x^{3}-\frac{1}{4} x^{4}\right)\right|_{0} ^{a}}{\left.\left(\frac{1}{2} a x^{2}-\frac{1}{3} x^{3}\right)\right|_{0} ^{a}}=\frac{\left(\frac{1}{3}-\frac{1}{4}\right) a^{4}}{\left(\frac{1}{2}-\frac{1}{3}\right) a^{3}}=\frac{1 / 12}{1 / 6} a=\frac{1}{2} a
\end{aligned}
$$

reasonable answer given the shape

$$
\begin{aligned}
\bar{y} & =\frac{\int y d m}{\int d m}=\frac{\int_{0}^{a^{2}} y \rho\left(\sqrt{y}-\frac{y}{a}\right) d y}{\int_{0}^{a^{2}} \varphi\left(\sqrt{y}-\frac{y}{a}\right) d y}=\frac{\int_{0}^{a^{2}}\left(y^{3 / 2}-\frac{1}{a} y^{2}\right) d y}{\int_{0}^{a^{2}}\left(y^{1 / 2}-\frac{1}{a} y\right) d y} \\
& =\frac{\left(\frac{2}{5} y^{5 / 2}-\frac{1}{3 a} y^{3}\right) a_{0}^{2}}{\left.\left(\frac{2}{3} y^{3 / 2}-\frac{1}{2 a} y^{2}\right) \right\rvert\, a^{2}}=\frac{\frac{2}{5} a^{5}-\frac{1}{3} a^{5}}{\frac{2}{3} a^{3}-\frac{1}{2} a^{3}}=\frac{15}{1 / 6} a^{2}=\frac{2}{5} a^{2}
\end{aligned}
$$

The center of mass of the region is $\left(\frac{1}{2} a, \frac{2}{5} a^{2}\right)$.
2. A stump with constant density and the shape of a chopped off cone has a top radius of two feet, a bottom radius of four feet, and a height of three feet. How far above the ground is its center of mass?

cross-sections are circles

$$
\bar{y}=\frac{\int_{0}^{3} y e^{\pi}\left(4-\frac{2}{3} y\right)^{2} d y}{\int_{0}^{3} e^{\pi}\left(4-\frac{2}{3} y\right)^{2} d y}=\frac{\int_{0}^{3} y(6-y)^{2} d y}{\int_{0}^{3}(6-y)^{2} d y}
$$

$$
\begin{aligned}
y-3 & =\frac{0-3}{4-2}(x-2) \\
y-3 & =-\frac{3}{2}(x-2)=-\frac{3}{2} x+3 \\
\frac{3}{2} x & =6-y \text { or } x=4-\frac{2}{3} y
\end{aligned}
$$

$$
=\frac{\int_{0}^{3}\left(y^{3}-12 y^{2}+36 y\right) d y}{\int_{0}^{3}\left(y^{2}-12 y+36\right) d y}=\frac{\left.\left(\frac{1}{4} y^{4}-4 y^{3}+18 y^{2}\right)\right|_{0} ^{3}}{\left.\left(\frac{1}{3} y^{3}-6 y^{2}+36 y\right)\right|_{0} ^{3}}
$$

$$
=\frac{3^{3}\left(\frac{3}{4}-4+6\right)}{3^{3}\left(\frac{1}{3}-2+4\right)}=\frac{11 / 4}{7 / 3}=\frac{33}{28}
$$

