1. Find the length of the curve $y=\frac{2 x^{3}}{3}+\frac{1}{8 x}$ on the interval $[1,2]$.

$$
\begin{aligned}
& \frac{d y}{d x}=2 x^{2}-\frac{1}{8 x^{2}} \\
& 1+\left(\frac{d y}{d x}\right)^{2}=1+4 x^{4}-\frac{1}{2}+\frac{1}{64 x^{4}}=4 x^{4}+\frac{1}{2}+\frac{1}{64 x^{4}}=\left(2 x^{2}+\frac{1}{8 x^{2}}\right)^{2} \\
& L=\int_{1}^{2}\left(2 x^{2}+\frac{1}{8 x^{2}}\right) d x=\left.\left(\frac{2}{3} x^{3}-\frac{1}{8 x}\right)\right|_{1} ^{2} \\
&=\frac{2}{3}(8-1)-\frac{1}{8}\left(\frac{1}{2}-1\right)=\frac{14}{3}+\frac{1}{16}=\frac{227}{48}
\end{aligned}
$$

The length of the curse us $\frac{227}{48}$ units.
2. Find the length of the curve $y=\ln |\cos x|$ on the interval $[0, \pi / 3]$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-\operatorname{sen} x}{\cos x}=-\tan x \\
& 1+\left(\frac{d y}{d x}\right)^{2}=1+\tan ^{2} x=\sec ^{2} x \\
& L=\int_{0}^{\pi / 3} \sec x d x=\left.\ln |\sec x+\tan x|\right|_{0} ^{\pi / 3} \quad[\text { basic trig identity }] \\
&=\ln |2+\sqrt{3}|-\ln |1+0| \\
&=\ln (2+\sqrt{3}) \approx \sec \operatorname{sintegal} 60
\end{aligned}
$$

3. Find the length of the entire curve given by the equation $x^{2 / 3}+y^{2 / 3}=1$. Include a sketch of the curve, noting that it has branches in all four quadrants.

find length in $Q I$, then multiply by 4

$$
\left.\begin{array}{rl}
y^{2 / 3} & =1-x^{2 / 3} \\
y & = \pm\left(1-x^{2 / 3}\right)^{3 / 2} \quad \text { use plus sign for } Q \mathcal{J} \\
\frac{d y}{d x} & =\frac{3}{2}\left(1-x^{2 / 3}\right)^{1 / 2} \cdot\left(-\frac{2}{3} x^{-1 / 3}\right)=-\frac{\sqrt{1-x^{2 / 3}}}{x^{1 / 3}} \\
1+\left(\frac{d y}{d x}\right)^{2}=1+\frac{1-x^{2 / 3}}{x^{2 / 3}}=\frac{1}{x^{2 / 3}} \\
L=4 \int_{0}^{1} x^{-1 / 3} d x=\left.4 \cdot \frac{3}{2} x^{2 / 3}\right|_{0} ^{1}=6 \quad\left\{\begin{array}{l}
\text { technically, unis us } \\
\text { an improper interpol } \\
\text { since } x^{1 / 3} \text { is unbounded } \\
\text { on }[0,1]
\end{array}\right.
\end{array}\right\}
$$

She length of the entire curse is 6 units.

