1. Prove that $f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}$ for each positive integer n.
start with some checking

$$
\begin{aligned}
& n=1 \quad 1^{2}=1 \cdot 1 \\
& n=2 \quad 1^{2}+1^{2}=1 \cdot 2 \\
& n=3 \quad 1^{2}+1^{2}+2^{2}=2 \cdot 3 \\
& n=4 \quad b_{1}^{2}+f_{2}^{2}+f_{3}^{2}+f_{4}^{2}=1^{2}+1^{2}+2^{2}+3^{2} \\
& =15 \\
& =3 \cdot 5 \\
& =8485
\end{aligned}
$$

set S method (mot regained)
Let s le the set of all positive integers n such that

$$
\sum_{i=1}^{n} f_{i}^{2}=f_{n} f_{n+1} \text {. since } \sum_{i=1}^{1} f_{i}^{2}=1^{2}=\left(1=f_{1} f_{2}\right. \text {) We }
$$

see that $\mid \in S$. Now suppose that $k \in S$ for some We them have

$$
\begin{aligned}
\sum_{i=1}^{k+1} \hbar_{i}^{2} & =\sum_{i=1}^{k} \hbar_{i}^{2}+\hbar_{k+1}^{2}=b_{k} k_{k+1}+f_{k+1}^{2} \\
& \left.=k_{k+1}\left(b_{k}+k_{k+1}\right)=k_{k+1} k_{k+2}\right)
\end{aligned}
$$

showing that $k+1 \in S$. We have thus proved "if $k \in S$, then $k+1 \in S$ ". By the PMI, we know $S=z^{+}$. Hence, the equation

$$
f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}
$$

us rabid for all positive integers n.
2. Prove that $f_{1} f_{2}+f_{2} f_{3}+f_{3} f_{4}+\cdots+f_{2 n-1} f_{2 n}=f_{2 n}^{2}$ for each positive integer n. (A comment concerning this problem was given in class; note that the pattern ends with an even subscript.) start urth some checking

$$
\begin{array}{ll}
n=1, & f_{1} f_{2}=1 \cdot 1=1^{2}=f_{2}^{2} \\
n=2, & f_{1} f_{2}+f_{2} f_{3}+f_{3} f_{4}=1 \cdot 1+1 \cdot 2+2 \cdot 3=9=3^{2}=f_{4}^{2} \\
n=3, & +f_{4} f_{5}+f_{5} f_{4}=9+3 \cdot 5+5 \cdot 8=64=8^{2}=f_{6}^{2}
\end{array}
$$

We wall use the PMI. As indicated clave, the equation us soled for $n=1,2$, 2. Suppose that $\sum_{i=1}^{2 k-1} f_{i} b_{i+1}=h_{2 k}^{2}$ for some $k \in Z^{+}$. Sher

$$
\sum_{i=1}^{2 k-1} f_{i} b_{i+1}=b_{2 k}^{2}
$$

$$
\begin{aligned}
\sum_{i=1}^{2 k+1} f_{i} f_{i+1} & =\sum_{i=1}^{2 k-1} f_{i} f_{i+1}+f_{2 k} f_{2 k+1}+f_{2 k+1} f_{2 k+2} \\
& =f_{2 k}+f_{2 k} f_{2 k+1}+f_{2 k+1} b_{2 k+2} \\
& =b_{2 k}\left(b_{2 k}+f_{2 k+1}\right)+f_{2 k+1} b_{2 k+2} \\
& =b_{2 k} f_{2 k+2}+f_{2 k+1} b_{2 k+2} \\
& =b_{2 k+2}\left(f_{2 k}+f_{2 k+1}\right) \\
& =f_{2 k+21}^{2}
\end{aligned}
$$

so the equation is valid for $k+1$. Day the PMI, the equation $\sum_{i=1}^{2 n-1} f_{i} f_{i+1}=b_{2 n}^{2}$ is true for all $n \in Z^{+}$.

This is the more common stifle for induction arguments, but now may use either style.

