Math 126

R+

Homework Assignment 17

Fall 2020

1. Prove that $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$ for each positive integer n. (Imitate the proof given for Theorem 3.1 in the textbook.)

We will use the PMI. Let S be the set of all positive
integers on for which
$$\sum_{i=1}^{\infty} i^2 = \frac{m^2(n+1)^2}{4}$$
. Since $i^2 = \frac{j^2 \cdot 2^2}{4}$,
we see that $1 \in S$. Now suppose that $k \in S$ for some
positive integer k. This means $\sum_{i=1}^{\infty} i^2 = \frac{k^2(k+1)^2}{4}$. We
then have $i=1$

Thus shows that $k+1 \in S$. Hence we have proved that $k \in S$ implies $k+1 \in S$. By the PMI, the set S equals Z^{\dagger} . Therefore $\sum_{i=1}^{m} i^{3} = \frac{m^{2}(m+1)^{2}}{4}$ for all positive integers m.

notes: you should check some numbers first $1 = \frac{1^{2} \cdot 2^{2}}{4}$ $1 + 8 = \frac{2 \cdot 2}{4}$ $1 + 8 + 27 = \frac{3^{2} \cdot 4}{4}$ also the factoring is guided by the fact that we know what we hope to get

Name:

2. Prove that for each positive integer n, the integer $7^n + 2^{2n+1}$ is divisible by 3. (Imitate the proof of Theorem 3.2 in the textbook.)

m = 0	7° + 2' = 3	= 3.1 (not necessary)	
m = 1	$7^{1} + 2^{3} = 15$	= 3 5	
m = 2	$7^2 + 2^5 = 81$	= 3.27	343
n = 3	$7^3 + 2^7 = 471$	= 3.157	128
all divisible by 3			

We will use the PMI. Since
$$7 + 2^3 = 15 = 3.5$$
, the
statement is true when $m = 1$. Now suppose that
 $7^k + 2^{2k+1}$ is divisible by 3 for some positive
integer k. By definition there expire an integer
is such that $7^k + 2^{2k+1} = 3i$. Then
 $7^{k+1} + 2^{2k+3} = 7 \cdot 7^k + 4 \cdot 2^{2k+1}$
 $= 7(3i - 2^{2k+1}) + 4 \cdot 2^{2k+1}$
 $= 7(3i) - 3 \cdot 2^{2k+1}$
which shows that $7^{k+1} + 2^{2(k+1)+1}$ is divisible by 3 .
By the PMI, the integer $7^m + 2^{2n+1}$ is divisible by 3 .