1. Prove that $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for each positive integer n. (Imitate the proof given for Theorem 3.1 in the textbook.)
We will use the PMI. Let S be the set of all poutive integers m for which $\sum_{i=1}^{m} i^{z}=\frac{n^{2}(n+1)^{2}}{4}$. Since $1^{3}=\frac{1^{2} \cdot 2^{2}}{4}$, we see that $\mid \in S$. Now suppose that $k \in S$ for some positive integer k. Thus means $\sum_{i=1}^{k} i^{3}=\frac{k^{2}(k+1)^{2}}{t}$. We then hare

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{3} & =\sum_{i=1}^{k} i^{3}+(k+1)^{3} \\
& =\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} \\
& =\frac{(k+1)^{2}}{4}\left(k^{2}+4(k+1)\right) \\
& =\frac{(k+1)^{2}}{4}(k+2)^{2} \\
& =\frac{(k+1)^{2}((k+1)+1)^{2}}{4}
\end{aligned}
$$

Thus shows that $k+1 \in S$. Hence we hare proved that $k \in S$ implies $k+1 \in S_{m} B y$ the $P M \underset{\sim}{I}$, the set S equals z^{+}. Therefore $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for all positive integer e n.
notes: yow should check some numbers first

$$
\begin{aligned}
& 1=\frac{1^{2} \cdot 2^{2}}{4} \\
& 1+8=\frac{2^{2} \cdot 3^{2}}{4} \\
& 1+8+27=\frac{3^{2} \cdot 4^{2}}{4}
\end{aligned}
$$

also the factoring is guided by the fact that we know what we hope to get
2. Prove that for each positive integer n, the integer $7^{n}+2^{2 n+1}$ is divisible by 3 . (Imitate the proof of Theorem 3.2 in the textbook.)

$$
\begin{array}{lll}
n=0 & 7^{0}+2^{1}=3 & =3 \cdot 1 \quad \text { (not necessary) } \\
n=1 & 7^{1}+2^{3}=15 & =3 \cdot 5 \\
n=2 & 7^{2}+2^{5}=81 & =3 \cdot 27 \\
n=3 & 7^{3}+2^{7}=471 & =3 \cdot 157
\end{array}
$$

all divisible by β
We wall use the PMI. Since $7+2^{3}=15=3 \cdot 5$, the statement is true when $n=1$. Now suppose that $7^{k}+2^{2 k+1}$ is divisible by \mathfrak{z} for some positive integer k. By definition, there epists an integer y such chat $7^{k+} 2^{2 k+1}=3 j$. Then

$$
\begin{aligned}
7^{k+1}+2^{2 k+3} & =7 \cdot 7^{k}+4 \cdot 2^{2 k+1} \\
& =7\left(3 j-2^{2 k+1}\right)+4 \cdot 2^{2 k+1} \\
& =7(3 j)-3 \cdot 2^{2 k+1} \\
& =3\left(7 j-2^{2 k+1}\right)
\end{aligned}
$$

which shows that $7^{k+1}+2^{2(k+1)+1}$ is divisible by 2^{2} By the PMI, the integer $7^{n}+2^{2 n+1}$ is divisible by 3 for every positive integer n.

