1. Turn in a solution to problem lb in Section 3.3. This solution should be formatted almost exactly like the first example in the last paragraph just prior to the exercises. For the record, there should be four clear steps and thus four references to theorems.
Find the limit, with proof, of the sequence $\left\{3 \sqrt{8}+\frac{k}{2^{k}}\right\}$.
$\{\sqrt[k]{8}\}$ converges to 1 by Theorem 3. 8 part (5).
$\left\{\sum \sqrt[k]{8}\right\}$ converges to ३ by Theorem ふे, 6 part (a).
$\left\{\frac{k}{2^{k}}\right\}=\left\{k\left(\frac{1}{2}\right)^{k}\right\}$ converges to 0 by Theorem 3.8 part (3)
$\left\{3 \sqrt[k]{8}+\frac{k}{2^{k}}\right\}$ converges to 3 by Jheorem 3.6 part (b).
We have thus proved that $\left\{3 \sqrt[k]{8}+\frac{k}{2^{k}}\right\}$ converges to 3 .
2. Find the limit of the sequence $\left\{\left(1-\frac{1}{3 n}\right)^{n}\right\}$. Explain your reasoning.

Since $\left\{\left(1-\frac{1}{\left.\frac{1}{2 m}\right)^{m}}\right\}=\left\{\left(1+\frac{-1 / 2}{m}\right)^{n}\right\}\right.$, the
sequence converges to $e^{-1 / 3}$ br past (7) of Theorem ${ }^{3} .8$.
3. Turn in a solution to problem 2 f in Section 3.3. Use the squeeze theorem and use estimates for sums like some of the examples you have seen, either in video lectures or in the extra notes.
Find the limit of the sequence $\left\{\sqrt[m]{2 n^{2}+4 n+3}\right\}$.
For each positive integer un, we see that

$$
\begin{aligned}
1 & \leq 2 n^{2}+4 n+3 \leq 9 n^{2} \text { also works } \\
n^{2} & \leq 2 n^{2}+4 n+3 \leq 9 n^{2}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
2 n^{2}+4 n^{2}+3 n^{2} \\
\text { is linger }
\end{array}\right\}
$$

and thew

$$
\sqrt[m]{n^{2}} \leq \sqrt[m]{2 n^{2}+4 n+3} \leq \sqrt[n]{9 n^{2}} .
$$

Since the sequences $\left\{\sqrt[n]{2 n^{2}}\right\}=\{\sqrt[n]{2} \cdot \sqrt[n]{\pi} \cdot \sqrt{\pi}\}$ and $\left\{\sqrt[\pi]{9 n^{2}}\right\}=\{\sqrt[n]{9} \sqrt[{\sqrt[n]{\pi}}]{\sqrt[n]{n}}\}$ both conserve to 1 , the sequeme $\left\{\sqrt[n]{2 x^{2}+4 x+3}\right\}$ converges to 1 by the squeeze theorem.
4. Turn in a solution to problem 4 in Section 3.3. Once again, use the squeeze theorem.
suppose $0<a<b$. Find the limit of $\left\{\left(a^{n}+b^{n}\right)^{1 / n}\right\}$.
For each positive integer n, we see that

$$
b^{n} \leq a^{n}+b^{n} \leq 2 b^{n} \Leftrightarrow b \leq \sqrt[m]{a^{n}+b^{n}} \leq b^{n} \sqrt{2} .
$$

Since $\{b\}$ and $\{b \sqrt[n]{2}\}$ both converge to b, the sequence $\left\{\left(a^{n}+b^{n}\right)^{1 / n}\right\}$ converges $t_{0} b$ by the squeeze theorem.
as an example $\left\{\sqrt[n]{2^{n}+10^{n}}\right\}$
when in us large $10^{\text {an }}$ us much much bigger them 2^{n} $\left(2^{n}+10^{n}\right)^{1 / n} \sim\left(10^{m}\right)^{1 / n}=10 \quad$ guess limit is 10

