1. For each positive integer n, let $x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{2 n}$. Prove that the sequence $\left\{x_{n}\right\}$ converges. (To prove that the sequence is bounded, consider using some over and under estimates for the terms in the sum. As a start, you should write out the first four terms of the sequence.)

$$
\begin{array}{ll}
x_{1}=\frac{1}{2} \\
x_{2}=\frac{1}{3}+\frac{1}{4} \\
x_{3}=\frac{1}{4}+\frac{1}{5}+\frac{1}{6} \\
x_{4}=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}
\end{array} \quad x_{n+1}^{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{2 n}+\frac{1}{2 n+1}+\frac{1}{2 n+2}
$$

Since $x_{n+1}-x_{n}=\frac{1}{2 n+1}+\frac{1}{2 n+2}-\frac{1}{n+1}=\frac{1}{2 n+1}-\frac{1}{2 n+2}>0$ for all n, the sequence $\left\{x_{n}\right\}$ is increasing.
Since $0<x_{n}<\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}=1$ for all n, the sequence $\left\{x_{m}\right\}$ us bounded.
Br y the Completeness axioms, the sequence $\left\{x_{n}\right\}$ conserges.
notes x_{n} is the sum of n numbers, all less than $1 / n$ could also we $\leq \frac{1}{n+1}$ and get $\frac{n}{n+1}<1$ for all n
x_{n+1} - x_{n} is a reasonable method to prove increasing since lots of cancellation occurs.
For the record, thu sequence appears in Exercise $2 c$ in section 2.3 . yow can the find the limit of the sequence.
$\frac{1}{2 n+2}$ us smaller than $\frac{1}{2 n+1}$ since the denominator us larger
2. Let $r_{1}=6$ and $r_{n+1}=\frac{r_{n}}{2}+\frac{7}{r_{n}}$ for each $n \geq 1$. Suppose that we already know that the sequence $\left\{r_{n}\right\}$ converges. Under this assumption, find the limit of the sequence.
Let L be the limit of the sequence $\left\{r_{n}\right\}$. Since

$$
\lim _{n \rightarrow \infty} r_{n+1}=L \text { and } \lim _{n \rightarrow \infty}\left(\frac{r_{n}}{2}+\frac{7}{r_{n}}\right)=\frac{L}{2}+\frac{7}{L},
$$

et follows that

$$
L=\frac{L}{2}+\frac{7}{L} \Leftrightarrow \frac{L}{2}=\frac{1}{L} \Leftrightarrow L^{2}=14 \Leftrightarrow \sqrt{14}
$$

Eure $r_{n}>0$ for all n, the limit of the segpuense us $\sqrt{14}$.
3. Define a sequence $\left\{a_{n}\right\}$ by $a_{1}=1$ and $a_{n+1}=3-\left(1 / a_{n}\right)$ for $n \geq 1$. We have already proved that $1 \leq a_{n} \leq 3$ for all n (see Exercise 3.1.5). Using similar ideas, use math induction to prove that $\left\{a_{n}\right\}$ is an increasing sequence. Then conclude that $\left\{a_{n}\right\}$ converges and find its limit.

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=\text { z }-\frac{1}{1}=2 \\
& a_{3}=\text { z }-\frac{1}{2}=\frac{5}{2} \\
& a_{4}=3-\frac{1}{5 / 2}=\frac{13}{5}
\end{aligned}
$$

We know $\left\{a_{\mu}\right\}$ is bounded since $1 \leq a_{n} \leq 3$ for ale n.

We will use the PMI to prove that $a_{n}<a_{n+1}$ for all positive integers n. Since $a_{1}=1<2=a_{2}$, the inequality us true when $n=1$. Now suffers that $a_{k}<a_{k+1}$ for some positive integer k. Then

$$
\begin{aligned}
a_{k}<a_{k+1} & \Rightarrow \frac{1}{a_{k}}>\frac{1}{a_{k+1}} \Rightarrow-\frac{1}{a_{k}}<-\frac{1}{a_{k+1}} \\
& \Rightarrow 3-\frac{1}{a_{k}}<\xi-\frac{1}{a_{k+1}} \Rightarrow a_{k+1}<a_{k+2}
\end{aligned}
$$

so the inequality us true for $k+1$ as well. By the PMI, we have $a_{n}<a_{n+1}$ for all n. Thus, the sequence $\left\{a_{n}\right\}$ is increasing. (of the completeness axiom, the sequence $\left\{a_{n}\right\}$ consreszes. Let L be the limit of the sequence and note that L is between 2 and \mathfrak{z}. The equation $a_{n+1}=\xi-\frac{1}{a_{n}}$ tells us that

$$
L=\xi-\frac{1}{L} \Rightarrow L^{2}-\xi L+1=0 \Rightarrow L=\frac{3 \pm \sqrt{9-4}}{2} .
$$

Since L ' 2, it follows that $L=\frac{3+\sqrt{5}}{2}$. Thus the limit of the sequence $\left\{a_{n}\right\}$ is $\frac{3+\sqrt{5}}{2}$.

