Math 126

Name:

notes

Homework Assignment 20

Fall 2020

1. For each positive integer n, let $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}$. Prove that the sequence $\{x_n\}$ converges. (To prove that the sequence is bounded, consider using some over and under estimates for the terms in the sum. As a start, you should write out the first four terms of the sequence.)

$$x_{1} = \frac{1}{2}, \qquad x_{n+1} = \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} + \frac{1}{2n+1}, \qquad x_{n+1} = \frac{1}{2n+1} + \frac{1}{2n+2}, \qquad x_{n+1} = \frac{1}{2n+1} + \frac{1}{2n+2}, \qquad x_{n+1} = \frac{1}{2n+1} + \frac{1}{2n+2}, \qquad x_{n+1} = \frac{1}{2n+2}, \qquad x_{$$

2. Let $r_1 = 6$ and $r_{n+1} = \frac{r_n}{2} + \frac{7}{r_n}$ for each $n \ge 1$. Suppose that we already know that the sequence $\{r_n\}$ converges. Under this assumption, find the limit of the sequence.

Set
$$L$$
 be the limit of the sequence $\{r_n\}$. Since
 $\lim_{n \to \infty} |r_{n+1}| = L$ and $\lim_{n \to \infty} \left(\frac{r_n}{2} + \frac{7}{r_n}\right) = \frac{L}{2} + \frac{7}{L}$,
it follows that
 $L = \frac{L}{2} + \frac{7}{L} \iff \frac{L}{2} = \frac{7}{L} \iff L^2 = 14 \iff L = \pm \sqrt{14}$.
Since $r_n > 0$ for all r_n , the limit of the sequence is $\sqrt{14}$.

3. Define a sequence $\{a_n\}$ by $a_1 = 1$ and $a_{n+1} = 3 - (1/a_n)$ for $n \ge 1$. We have already proved that $1 \le a_n \le 3$ for all n (see Exercise 3.1.5). Using similar ideas, use math induction to prove that $\{a_n\}$ is an increasing sequence. Then conclude that $\{a_n\}$ converges and find its limit.

$$a_{1} = 1$$

$$a_{2} = 3 - \frac{1}{1} = 2$$

$$a_{3} = 3 - \frac{1}{2} = \frac{5}{2}$$

$$a_{4} = 3 - \frac{1}{5/2} = \frac{13}{5}$$
We know $\{a_{n}\}$ is bounded since $1 \le a_{n} \le 3$ for all n .

- We will use the PMI to prove that $a_n < a_{n+1}$ for all positive integers n. Since $a_1 = 1 < 2 = a_2$, the inequality is true when n = 1. Now suffose that $a_k < a_{k+1}$ for some positive integer k. Then
- $\begin{array}{l} q_{k} \leq q_{k+1} \implies \frac{1}{q_{k}} > \frac{1}{q_{k+1}} \implies -\frac{1}{q_{k}} \leq -\frac{1}{q_{k+1}} \implies q_{k+1} \leq q_{k+2}, \\ \implies 3 \frac{1}{q_{k}} \leq 3 \frac{1}{q_{k+1}} \implies q_{k+1} \leq q_{k+2}, \\ \text{is the inequality is true for k+1 as well. By the PMI, we have <math>q_{n} \leq q_{n+1}$ for all n. Thus, the sequence $\{q_{n}\}$ is increasing. By the completeness Option, the sequence $\{q_{n}\}$ converges. Let L be the limit of the sequence and note that L is between 2 and 3. The equation $q_{n+1} = 3 \frac{1}{q_{n}}$ tells us that $L = 3 \frac{1}{2} = 3L + 1 = 0 \implies L = \frac{3 \pm \sqrt{9 4}}{2}. \\ \text{Sunce } L \geq q_{1}$ is follows that $L = \frac{3 \pm \sqrt{9 4}}{2}. \\ \text{Sunce } L \geq q_{1}$ is follows that $L = \frac{3 \pm \sqrt{5}}{2}. \\ \text{Sunce } L \geq q_{2}$ is $\frac{3 \pm \sqrt{5}}{2}. \end{cases}$