Math 126

Homework Assignment 21

Fall 2020

1. Prove that the series
$$\sum_{k=1}^{\infty} \frac{7}{\sqrt[k]{4+3}}$$
 diverges.
Note that $\lim_{k \to \infty} \frac{7}{k+3} = \frac{7}{1+3} = \frac{7}{4}$. Since the sequence $\left\{\frac{7}{\sqrt[k]{4+3}}\right\}$ does not converge to 0, the series $\left\{\frac{7}{\sqrt[k]{4+3}}\right\}$ does not converge to 0, the series $\int_{\sqrt[k]{4+3}}^{\infty} \frac{7}{\sqrt[k]{4+3}} = \frac{7}{\sqrt[k]{4+3}}$ diverges by the divergence Test.

2. Find the sum of the series
$$\sum_{k=1}^{\infty} \frac{(-1)^k 2^{k+1}}{3^k}$$
.
This is a geometric series with $r = -\frac{2}{3}$ and $a = -\frac{4}{3}$.
It follows that
 $\sum_{k=1}^{\infty} \frac{(-1)^k 2^{k+1}}{3^k} = \frac{-\frac{4}{3}}{1-(-\frac{2}{3})} = -\frac{\frac{4}{3}}{5/3} = -\frac{4}{5}$.
The series converges since $|r| < 1$.
We find a by using $k = 1$ to get the first term.
 $\sum_{k=1}^{\infty} \frac{(-1)^k 2^{k+1}}{3^k} = \sum_{k=1}^{\infty} \frac{(-1)^k 2^{k+2}}{3^k} = \sum_{k=1}^{\infty} 2(-\frac{2}{3})^k$.

3. Find the sum of the series $\sum_{k=2}^{\infty} \frac{5k^2 - 3}{2^k}$ given that $\sum_{k=1}^{\infty} \frac{k^2}{2^k} = 6$. Pay attention to the starting value of the index; it is different for each series. Since $\varphi = \sum_{k=1}^{\infty} \frac{k}{2^k} = \frac{1}{2} + \sum_{k=2}^{\infty} \frac{k}{2^k}$, it follows that $\sum_{k=2}^{\infty} \frac{k}{2^k} = \frac{1}{2} + \sum_{k=2}^{\infty} \frac{k}{2^k}$, we have $\sum_{k=2}^{\infty} \frac{5k^2 - 3}{2^k} = \frac{11}{2}$. By profertures of series, we have $\sum_{k=2}^{\infty} \frac{5k^2 - 3}{2^k} = 5 \sum_{k=2}^{\infty} \frac{k}{2^k} - \sum_{k=2}^{\infty} \frac{3}{2^k}$ $= 5 \cdot \frac{11}{2} - \frac{3/4}{1 - \frac{1}{2}}$ (geometric series) $= \frac{55}{2} - \frac{3}{2}$ The sum of the series is 26.

4. Let $\sum_{k=1}^{\infty} a_k$ be an infinite series and suppose that $s_n = \frac{2n+5}{3n-4}$ for all $n \ge 1$, where $\{s_n\}$ represents the corresponding sequence of partial sums. Find a_1, a_2, a_{10} , and the sum of the series.

By the definition, we have

$$\sum_{k=1}^{\infty} a_k = \lim_{m \to \infty} \sum_{k=1}^{\infty} a_k = \lim_{m \to \infty} a_n = \lim_{m \to \infty} \frac{2n+5}{3n-4} = \frac{2}{3}$$
This gives the sum of the series. Using the fact
that $a_n = \sum_{n=1}^{\infty} a_k$, we find that
 $a_1 = a_1 = -\frac{7}{1} = -7$;
 $a_2 = a_2 - a_1 = -\frac{9}{2} - (-7) = -\frac{23}{2}$;
 $a_{10} = a_{10} - a_9 = -\frac{25}{26} - \frac{23}{23} = -\frac{1}{26}$.