1. Prove that the series $\sum_{k=1}^{\infty} \frac{7}{\sqrt[k]{4}+3}$ diverges. note that $\lim _{k \rightarrow \infty} \frac{7}{\sqrt[k]{4}+3}=\frac{7}{1+3}=\frac{7}{4}$. since the sequence $\left\{\frac{7}{\sqrt[k]{4}+3}\right\}$ does not converge to 0 , the series $\sum_{k=1}^{\infty} \frac{7}{\sqrt[k]{4}+3}$ diverges lon the ovirergence Jest.
2. Find the sum of the series $\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{k+1}}{3^{k}}$.

This is a geometric series unth $r=-\frac{2}{3}$ and $a=-\frac{4}{3}$. at follower that

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{k+1}}{3^{k}}=\frac{-4 / 3}{1-\left(-\frac{2}{3}\right)}=-\frac{4 / 3}{5 / 3}=-\frac{4}{5}
$$

The series converges since $|r|<1$.
We find a by using $k=1$ to get the first term.

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{k+1}}{3^{k}}=\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{k} \cdot 2}{3^{k}}=\sum_{k=1}^{\infty} 2\left(-\frac{2}{3}\right)^{k} .
$$

3. Find the sum of the series $\sum_{k=2}^{\infty} \frac{5 k^{2}-3}{2^{k}}$ given that $\sum_{k=1}^{\infty} \frac{k^{2}}{2^{k}}=6$. Pay attention to the starting value of the index; it is different for each series.
Since $\varphi=\sum_{k=1}^{\infty} \frac{k^{2}}{2^{\hbar}}=\frac{1}{2}+\sum_{k=2}^{\infty} \frac{k^{2}}{2^{k}}$, ut follows that

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{k^{2}}{2^{k}}=\frac{11}{2} \cdot \sum_{k=2}^{\infty} \\
& \sum_{k=2}^{\infty} \frac{5 k^{2}-3}{2^{k}}=5 \sum_{k=2}^{2^{k}} \frac{k^{2}}{\infty} \sum_{k=2}^{k} \\
&=5 \cdot \frac{11}{2}-\frac{3 / 4}{1-\frac{1}{2}} \\
&=\frac{55}{2}-\frac{3}{2} \\
&=26
\end{aligned}
$$

The sum of the series is 26 .
4. Let $\sum_{k=1}^{\infty} a_{k}$ be an infinite series and suppose that $s_{n}=\frac{2 n+5}{3 n-4}$ for all $n \geq 1$, where $\left\{s_{n}\right\}$ represents the corresponding sequence of partial sums. Find a_{1}, a_{2}, a_{10}, and the sum of the series.
Rif the definition, we hare

$$
\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{2 n+5}{3 n-4}=\frac{2}{3}
$$

Thus gives thess sum of the series. Using the fact that $s_{n}=\sum_{k=1}^{n} a_{k s}$ we find that

$$
\begin{aligned}
& a_{1}=s_{1}=\frac{7}{-1}=-7 ; \\
& a_{2}=s_{2}-s_{1}=\frac{9}{2}-(-7)=\frac{23}{2} ; \\
& a_{10}=s_{10}-s_{9}=\frac{25}{26}-\frac{23}{23}=-\frac{1}{26} .
\end{aligned}
$$

