1. Use the Integral Test to show that $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$ diverges and $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{2}}$ converges. Use correct notation for improper integrals and note that the lower limit of integration is 2 .
For $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$, we hare $f(x)=\frac{1}{x \ln x}$. since

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x \ln x} d x & =\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1 / x}{\ln x} d x \\
& =\lim _{b \rightarrow \infty}\left(\ln \left(\left.\ln b|\ln x|\right|_{a} ^{b}-\ln (\ln 2)\right)=\infty\right.
\end{aligned}
$$

$$
\int \frac{d u}{u} \text { form }
$$

$$
\text { so } \ln |u|
$$

the serves diverges buy the denteqpal Jest.

$$
\begin{aligned}
\text { For } \sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{2}} \text {, we hare } f(x)=\frac{1}{x(\ln x)^{2}} \cdot \operatorname{since} \\
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x & =\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1 / x}{(\ln x)^{2}} d x=\left.\lim _{b \rightarrow \infty} \frac{-1}{\ln x}\right|_{2} ^{b} \quad \int \frac{1 u}{u^{2}} \text { form } \\
& \left.=\lim _{b \rightarrow \infty}\left(-\frac{1}{\ln b}-\left(\frac{-1}{\ln 2}\right)\right)=\frac{1}{\ln 2}\right)
\end{aligned}
\end{aligned}
$$

the series converges by the dentegal Jest.
2. Find all values of a, where a is a real number, for which the series $\sum_{k=1}^{\infty} \frac{1}{k^{6 a-a^{2}}}$ converges.

From the ϕ-series result, we know that thus series converges when $6 a-a^{2}>1$. solving the inequality, we fond that complete the square

The series converges for all a that satisfy

$$
3-2 \sqrt{2}<a<3+2 \sqrt{2}
$$

$$
\begin{aligned}
& 6 a-a^{2}>1 \Rightarrow a_{\sqrt{x^{2}}=1 x \mid}^{2} \Rightarrow \sqrt{8}=1<\sqrt{4} \cdot \sqrt{2} \Rightarrow(a-3)^{2}<8 \\
& \Rightarrow\left|a^{2}-3\right|<2 \sqrt{2} \Rightarrow-2 \sqrt{2}<a-3<2 \sqrt{2} \\
& \Rightarrow 3-2 \sqrt{2}<a<3+2 \sqrt{2}
\end{aligned}
$$

3. For each positive integer n, let $z_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\int_{1}^{n} \frac{d x}{x}$. Use the ideas in this section to prove that $\left\{z_{n}\right\}$ is a decreasing sequence of positive terms and thus convergent. For the decreasing part, it is best to consider $z_{n}-z_{n+1}$ since the terms of the sequence involve additions. To show that all of the terms are positive, look carefully at the inequalities next to the graph in the section.

In the section, we proved that

$$
\int_{1}^{n} f(x) d x<\sum_{k=1}^{n} a_{k}<a_{1}+\int_{1}^{n} f(x) d x
$$

where $f(x)$ is a decreasing function. When $a_{k}=\frac{1}{k}$, this inequality becomes

$$
\begin{aligned}
& \int_{1}^{n} \frac{1}{x} d x<\sum_{k=1}^{n} \frac{1}{k} \leqq 1+\int_{1}^{n} \frac{1}{x} d x \\
\Rightarrow & 0<\sum_{k=1}^{n} \frac{1}{k}-\int_{1}^{n} \frac{1}{x} d x \leqq 1
\end{aligned}
$$

$$
\text { get }=\text { when } n=1
$$

Thus show that $0<z_{n} \leq 1$ for all n. Hence, the sequence $\left\{z_{i}\right\}$ is bounded. We also have so the sequence $\left\{z_{i n}\right\}$ is decreasing. Since $\left\{z_{n}\right\}$ is bounded and monotone, it converges by the completeness axiom.

$$
\begin{aligned}
& z_{n}-z_{n+1}=\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\int_{1}^{n} \frac{1}{x} d x\right)-\left(1+\frac{1}{2}+\cdots+\frac{1}{i_{n}}+\frac{1}{n+1}-\int_{1}^{n+1} \frac{1}{x} d x\right) \\
& =-\int_{n+1}^{n} \frac{1}{x} d x-\frac{1}{n+1}+\int_{1}^{n+1} \frac{1}{x} d x \quad \int_{1}^{n+1} f(x) d x-\int_{1}^{n} f(x) d x=\int_{n}^{n+1} f(x) d x \\
& =\int_{-n}^{n+1} \frac{1}{x} d x-\frac{1}{n+1} \quad \text { (red area in graph) } \\
& >0 \\
& \text { for all } n \text {. Thus hus test } z_{n}>z_{n+1} \text { for all } n
\end{aligned}
$$

