Math 126

Homework Assignment 24

1. Show that the series
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}k^2}{2k^4 + 13}$$
 is absolutely convergent.
Since $\left| \frac{(-1)^{k+1}k^2}{2k^4 + 13} \right| = \frac{k^2}{2k^4 + 13} < \frac{k^2}{2k^4} = \frac{1}{2k^2} < \frac{1}{k^2}$
for all $k \ge 1$ and $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is a convergent β -series,
the series $\sum_{k=1}^{\infty} \left| \frac{(-1)^{k+1}k^2}{2k^4 + 13} \right|$ converges by the Comparison Test.
Hence, the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}k^2}{2k^4 + 13}$ is absolutely convergent.

2. Determine (with proof and/or explanation) if the series $\sum_{k=1}^{\infty} \frac{(-1)^k (k+1)}{2k^3 + 7k^2 - 1}$ is absolutely convergent, conditionally convergent, or divergent.

conditionally convergent, or divergent.
We will use the Simit Comparison Test to prove that

$$\begin{array}{l} \sum_{k=1}^{\infty} \frac{k+1}{2k^{2}+2k^{2}-1} & \text{converges}; \text{ it then follows that the series} \\
\sum_{k=1}^{\infty} \frac{(-1)^{k}(k+1)}{2k^{2}+7k^{2}-1} & \text{u absolutely convergent}, \\
k=1 \frac{k^{2}}{2k^{2}+7k^{2}-1} & \text{u absolutely convergent}, \\
\text{dimee} & \sum_{k=1}^{\infty} \frac{k^{2}}{2k^{2}+1k^{2}-1} & = \lim_{k \to \infty} \frac{k^{3}+k^{2}}{2k^{3}+7k^{2}-1} & = \frac{1}{2}, \\
\text{the series} & \sum_{k=1}^{\infty} \frac{k+1}{2k^{2}+7k^{2}-1} & \text{converges by the LCT.}
\end{array}$$

3. Give an example of a series for which $\sum_{k=1}^{\infty} a_k$ converges but $\sum_{k=1}^{\infty} a_k^2$ diverges. (Note that the result of det $a_k = \frac{(-1)^k}{\sqrt{1-1}}$ Exercise 5 in the textbook is relevant here.) $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}} \text{ converges by the AST.}$ $\sum_{k=1}^{\infty} a_k^2 = \sum_{k=1}^{\infty} \left(\frac{(-1)^k}{1k} \right)^2 = \sum_{k=1}^{\infty} \frac{1}{k} \text{ diverses } \left(p^{-1} \text{ series with } p^{-1} \right).$ 4. Carefully prove that the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}k}{3k^2+2}$ is conditionally convergent. (Note that two proofs are required; one to show a series diverges and another to show a series converges.) We first consider the series $\int_{b=1}^{10} \frac{k}{3k^2+2}$. Since $\frac{k}{3k^2+2}$, $\frac{k}{4k^2} = \frac{1}{4} \cdot \frac{1}{k}$ for all $k \ge 2$ and the serves $\sum_{k=1}^{\infty} \frac{1}{k} \frac{1}{k}$ diverges, the serves $\sum_{k=1}^{\infty} \frac{k}{3k^2+2}$ diverges by the comparison Test. We next look at the sequence $\left\{\frac{k}{3k^2+2}\right\}$. It does converge to O. Jo show it is decreasing, let $f(x) = \frac{x}{3x^2+2}$ and compute $f'(x) = \frac{3x^2 + 2 - 6x}{(3x^2 + 2)^2} = \frac{2 - 3x^2}{(3x^2 + 1)^2}$. Since f'(x) < 0 for all $x \ge 1$, the sequence { $\frac{k}{3k^2+2}$ is decreasing. By the alternating deries test, the series $\sum_{k=1}^{n} \frac{(-1)^{k+1}k}{3k^2+2}$ converges. With these two results, we see that is $3k^{2+2}$ is conditionally convergent.