1. Determine whether or not the series $\sum_{k=1}^{\infty}\left(\frac{2 k}{3 k+\sqrt[k]{k}}\right)^{k}$ converges.

We will use the Root Jest.

$$
l=\lim _{k \rightarrow \infty} \sqrt[k]{\left(\frac{2 k}{3 k+\sqrt[k]{k}}\right)^{k}}=\lim _{k \rightarrow \infty} \frac{2 k}{3 k+\sqrt[k]{k}}=\frac{2}{3}
$$

Brace $l<1$, the series converges.
recall that $\{\sqrt[R]{K}\}$ converges to 1
C and AC are the same when all terms are positive.
2. Determine whether or not the series $\sum_{k=1}^{\infty} \frac{(-2)^{k} k!}{4 \cdot 7 \cdot 10 \cdots(3 k+1)}$ converges.

We will we the Rato Seat:

$$
\begin{aligned}
l & =\lim _{k \rightarrow \infty} \frac{2^{k+1}(k+1)!}{4 \cdot 7 \cdot 10 \cdots(3 k+1)(3 k+4)} \cdot \frac{4 \cdot 7 \cdot 10 \cdots(3 k+1)}{2^{k} k!} \\
& =\lim _{k \rightarrow \infty} \frac{2(k+1)}{3 k+4}=\frac{2}{3} .
\end{aligned}
$$

Since $l<1$, the series concierges (absolutely).
$(-1)^{*}$ is "removed. boy the absolute values went straight to the insert and multiply step
3. Determine if the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k^{3}}{3^{k}}$ converges absolutely, converges conditionally, or diverges.

We will use the Root Jest:

$$
l=\lim _{k \rightarrow \infty} \sqrt[k]{\left|(-1)^{k+1} \frac{k^{3}}{3^{k}}\right|}=\lim _{k \rightarrow \infty} \frac{(\sqrt[k]{k})^{3}}{3^{3}}=\frac{1}{2^{3}} .
$$

Since $l<1$, the series converges absolutely.
4. Find all values of x for which the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k}{3^{k}}(x-1)^{k}$ converges absolutely. Hint: Express ℓ as a function of x.
We will use the Ratio Jest: (just to illustrate)

$$
\begin{aligned}
l & =\lim _{k \rightarrow \infty}\left|\frac{(k+1)(x-1)^{k+1}}{3^{k+1}} \cdot \frac{3^{k}}{k(x-1)^{k}}\right| \\
& =\lim _{k \rightarrow \infty} \frac{k^{k+1}}{3^{k}}|x-1|=\frac{|x-1|}{z^{3}} .
\end{aligned}
$$

We need $l<1$ for absolute convergence. Hence, the series converges absolutely for all x that satisfy $|x-1|<3$.
this corresponds to the internal (-2, 4)

