1. Find the interval of convergence for the power series $\sum_{k=0}^{\infty} \frac{4}{(k+2) 3^{k}}(x-1)^{k}$. Be certain to check whether or not the series converges at the endpoints.
By the Root Jest, we have

$$
l=\lim _{k \rightarrow \infty} \frac{\sqrt[k]{4}}{\sqrt[k]{\sqrt[k]{k}+2}}|x-1|=\frac{|x-1|}{3^{3}} .
$$

The serves is absolutely cansergent when $|x-1|<3$ which us equivalent to $x \in(-2,4)$. is 3 in of convergence $x=-2$ gives $\sum_{k=0}^{\infty} \frac{4(-1)^{k}}{k+2}$, which converges by the $A S \tau$ $x=4$ gives $\sum_{k=0}^{\infty} \frac{4}{k+2}$, which diverges by the $C T$ compare urth harmonic series

The interval of convergence is $[-2,4)$.

The center is $\frac{2+8}{2}=5$ and radius us $\frac{8-2}{2}=3$. The serin $\sum_{k=0}^{\infty} \frac{1}{3^{k}(2 k+1)}(x-5)^{k}$ has the desired properties.
at 2, $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} C$ boAST; at $8, \sum_{k=0}^{\infty} \frac{1}{2 k+1} D \operatorname{by} C \tau$
3. Referring to Exercise 7 in Section 3.10, find a simple expression for the function represented by the power series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{4^{k+1}}(x-3)^{k}$. In addition, determine both the radius of convergence and the interval of convergence for this series, noting that you should NOT need to use the Root or Ratio Test to do so.

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{4^{k+1}}(x-3)^{k}=\sum_{k=0}^{\infty} \frac{1}{4}\left(-\frac{x-3}{4}\right)^{k}
$$

Thus is a geometric series with $r=-\frac{x-3}{4}$.
De converges when $\left|-\frac{x-3}{4}\right|<1 \Leftrightarrow|x-3|<4$. The radius of convergence is thus 4 and the interval of convergence us $(-1,7)$. The function represented by the power serves is

$$
\frac{\frac{1}{4}}{1-\left(-\frac{x-3}{4}\right)}=\frac{1 / 4}{1+\frac{x-3}{4}}=\frac{1}{x+1}
$$

use $\frac{a}{1-r}$ for a geometric series

