Name:

Math 126

Homework Assignment 26

1. Find the interval of convergence for the power series $\sum_{k=0}^{\infty} \frac{4}{(k+2)3^k} (x-1)^k$. Be certain to check whether or not the series converges at the endpoints.

By the Goot Text, we have

$$l = \lim_{k \to \infty} \frac{1}{2} \frac{1}{2^{k+2}} |x-1| = \frac{|x-1|}{2^{k}}$$
.
The series is absolutely convergent when $|x-1| < 3$
which is equivalent to $x \in (-2, 4)$. is 3
 $x = -2$ gives $\sum_{k=0}^{\infty} \frac{4(-1)^{k}}{k+2}$, which converges by the AST
 $x = 4$ gives $\sum_{k=0}^{\infty} \frac{4}{k+2}$, which diverges by the CT
 $x = 4$ gives $\sum_{k=0}^{\infty} \frac{4}{k+2}$, which diverges by the CT

2. Give an example of a power series that has [2, 8) as its interval of convergence.

The center is
$$\frac{2+8}{2} = 5$$
 and radius is $\frac{8-2}{2} = 3$. The
reries $\sum_{k=0}^{\infty} \frac{1}{3^{k}(2k+1)} (x-5)^{k}$ has the desired properties.
 $R = 0$ $\frac{1}{3^{k}(2k+1)} (x-5)^{k}$ has the desired properties.
 $d 2, \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2k+1} \subset e_{2}AST; at 8, \sum_{k=0}^{\infty} \frac{1}{2k+1} D e_{2}CT$

3. Referring to Exercise 7 in Section 3.10, find a simple expression for the function represented by the power series $\sum_{k=0}^{\infty} \frac{(-1)^k}{4^{k+1}} (x-3)^k$. In addition, determine both the radius of convergence and the interval of convergence for this series, noting that you should NOT need to use the Root or Ratio Test to do so.

$$\sum_{R=0}^{\infty} \frac{(-1)^{R}}{4^{R+1}} (x-3)^{R} = \sum_{R=0}^{\infty} \frac{1}{4} \left(-\frac{x-3}{4}\right)^{R}$$
Thus is a geometric series with $r = -\frac{x-3}{4}$.
St converges when $\left|-\frac{x-3}{4}\right| < 1 \iff |x-3| < 4$.
The roduus of convergence is thus 4 and the
interval of convergence is $(-1, 7)$. The function
represented by the power series is

$$\frac{1}{4} = \frac{1}{1+\frac{x-3}{4}} = \frac{1}{x+1}$$

L