1. Use a geometric series to find a power series expression centered at 1 for the function $f(x)=\frac{2}{7-4 x}$ and determine the interval of convergence for the resulting series. (Note that finding the interval should be very easy and require minimal effort.)

$$
\begin{aligned}
f(x) & =\frac{2}{7-4 x}=\frac{2}{3-4(x-1)}=\frac{2 / 3}{1-\frac{4}{3}(x-1)} \quad a=\frac{2}{3} \\
f(x) & =\sum_{k=0}^{\infty} \frac{2}{3}\left(\frac{4}{3}(x-1)\right)^{k}=\sum_{k=0}^{\infty} \frac{2 \cdot 4^{k}}{3 \cdot 3^{k}}(x-1)^{k} \\
& =\sum_{k=0}^{\infty} \frac{2^{k}}{3^{k+1}}(x-1)^{k}
\end{aligned}
$$

The series converges when $\left|\frac{4}{3}(x-1)\right| \prec 1 \Leftrightarrow|x-1|<\frac{3}{4}$. The interval of convergence is $\left(\frac{1}{4}, \frac{7}{4}\right)$.
2. Use results in Section 3.11 (as well as some basic ideas) to find the sum of the series $\sum_{k=1}^{\infty} \frac{3 k^{2}+k+1}{4^{k}}$.

$$
\begin{aligned}
& \sum_{k=1}^{\infty} x^{k}=\frac{x}{1-x} \sum_{k=1}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}, \sum_{k=1}^{\infty} k^{2} x^{k}=\frac{x+x^{2}}{(1-x)^{3}} . \\
& \sum_{k=1}^{\infty} \frac{3 k^{2}+k+1}{4 k}=\sum_{k=1}^{\infty} k^{2}\left(\frac{1}{4}\right)^{k}+\sum_{k=1}^{\infty} k\left(\frac{1}{4}\right)^{k}+\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k} \\
& =3 \cdot \frac{\frac{1}{4}+\frac{1}{16}}{(3 / 4)^{3}}+\frac{1 / 4}{(3 / 4)^{2}}+\frac{1 / 4}{3 / 4} \\
& =\frac{3}{27}(16+4)+\frac{1}{9} \cdot 4+\frac{1}{3} \\
& =\frac{20}{9}+\frac{4}{9}+\frac{3}{9} \\
& =3 .
\end{aligned}
$$

The sum of the series us \mathcal{Z}.
3. Starting with the solution to problem 2 in Section 3.11 (it can be found in the back of the book) and taking derivatives, find a formula for the sum of the series $\sum_{k=1}^{\infty} k^{3} x^{k}$. Use your formula to find $\sum_{k=1}^{\infty} \frac{k^{3}}{3^{k}}$.

$$
\frac{x+x^{2}}{(1-x)^{3}}=\sum_{k=1}^{\infty} k^{2} x^{k}
$$

differentiate both sides then multiply y br y x

On particular, we find that

$$
\sum_{k=1}^{\infty} \frac{k^{3}}{3^{k}}=\sum_{k=1}^{\infty} k^{3}\left(\frac{1}{3}\right)^{k}=\frac{\frac{1}{3}+\frac{4}{9}+\frac{1}{27}}{(2 / 3)^{4}}=\frac{22}{27} \cdot \frac{81}{16}
$$

$$
=\frac{22}{16} \cdot 3=\frac{33}{8}
$$

$$
\begin{aligned}
& x \frac{d}{d x} \sum_{k=1}^{\infty} k^{2} x^{k}=x \sum_{k=1}^{\infty} k^{3} x^{k-1}=\sum_{k=1}^{\infty} k^{3} x^{k} \\
& x \frac{d}{d x} \frac{x+x^{2}}{(1-x)^{3}}=x\left(\frac{(1-x)^{3}(1+2 x)-\left(x+x^{2}\right) 3(1-x)^{2}(-1)}{(1-x)^{6}}\right) \\
& =x\left(\frac{(1-x)(1+2 x)+3\left(x+x^{2}\right)}{(1-x)^{4}}\right) \\
& =x\left(\frac{1+x-2 x^{2}+3 x+3 x^{2}}{(1-x)^{4}}\right) \\
& =\frac{x+4 x^{2}+x^{3}}{(1-x)^{4}} \\
& \text { therefore } \sum_{k=1}^{\infty} k^{3} x^{k}=\frac{x+4 x^{2}+x^{3}}{(1-x)^{4}} \text { for }|x|<1 \text {. }
\end{aligned}
$$

