1. Use the Maclaurin series for $\sin x$ to find the Maclaurin series for the function $\frac{\sin x-x}{x^{3}}$.
relevant Maclaurinatries.
2. Use the Maclaurin series for $\sin x$ to find the Maclaurin series for the function $\int_{0}^{x} \frac{\sin t}{t} d t$.

$$
\begin{aligned}
\frac{\sin t}{t} & =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k} \\
\int_{0}^{x} \frac{\sin t}{\pi} d t & =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \int_{0}^{x} t^{2 k} d t \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)(2 k+1)!} x^{2 k+1}
\end{aligned}
$$

This represents the requested Maclourin series.

$$
\begin{aligned}
& \frac{\sin t}{t}=1-\frac{1}{6} t^{2}+\frac{1}{120} t^{4}-\frac{1}{7!} t^{6}+\cdots \\
& \int_{0}^{x} \frac{\sin t}{\pi} d t=x-\frac{1}{18} x^{3}+\frac{1}{600} x^{5}-\frac{1}{7 \cdot 7!} x^{7}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \\
& \text { Here are the three. } \\
& \sin x-x=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \\
& \frac{\sin x^{-x}}{x^{3}}=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)!2 k-2} x^{\infty} \frac{(-1)^{k+1}}{(2 k+3)!} x_{k=0}^{(2 k} \\
& \sin x=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{7!} x^{7}+\cdots \cdot \\
& \frac{\sin x-x}{x^{3}}=-\frac{1}{6}+\frac{1}{120} x^{2}-\frac{1}{7!} x^{4}+\cdots \cdots
\end{aligned}
$$

3. Use known Maclaurin series to represent the series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} x^{2 k+1}$ as a more familiar function.

The k ! term indicates an e^{x} type function.

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} x^{2 k+1} & =x \sum_{k=0}^{\infty} \frac{1}{k!}\left(-x^{2}\right)^{k} \\
& =x e^{-x^{2}} .
\end{aligned}
$$

4. For the function $f(x)=x e^{x^{3}}$, find $f^{(61)}(0)$. (First find the Maclaurin series for f, then look again at Theorem 3.23.)
The Maclaurin series for fo is

$$
f(x)=x e^{x^{3}}=x \sum_{k=0}^{\infty} \frac{1}{k!}\left(x^{3}\right)^{k}=\sum_{k=0}^{\infty} \frac{1}{k!} x^{3 k+1} .
$$

We know that $f^{(61)}(0)=61!c_{61}$. Jo find c_{61}, we let $k=20$. [We need the coefficient on the x^{61} term.] at follows that $c_{61}=\frac{1}{20!}$ and thus $f^{(61)}(0)=\frac{61!}{20!}$.

