Problem: For each positive integer n, the formula

$$
1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+n(n+2)=\frac{n(n+1)(2 n+7)}{6}
$$

is valid.
Proof: (formal style; it is good to do a few proofs this way) We will use the Principle of Mathematical Induction. Let S be the set of all positive integers n such that

$$
1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+n(n+2)=\frac{n(n+1)(2 n+7)}{6}
$$

Since $1 \cdot 3=(1 \cdot 2 \cdot 9) / 6$, it is clear that $1 \in S$. Suppose that $k \in S$ for some positive integer k. We then have

$$
\begin{array}{rlrl}
1 \cdot & 3+2 \cdot 4+3 \cdot 5+\cdots+(k+1)(k+3) & \text { (substituting } k+1 \text { for } n) \\
& =1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+k(k+2)+(k+1)(k+3) & \text { (include extra term) } \\
& =\frac{k(k+1)(2 k+7)}{6}+(k+1)(k+3) & & \text { (since } k \in S) \\
& =\frac{k+1}{6}\left(2 k^{2}+7 k+6 k+18\right) & & \\
& =\frac{k+1}{6}(k+2)(2 k+9) & & \text { (factoring) } \\
& =\frac{(k+1)(k+2)(2(k+1)+7)}{6} . & \text { (the form wactoring) }
\end{array}
$$

This shows that $k+1 \in S$. By the Principle of Mathematical Induction, it follows that $S=Z^{+}$. Hence,

$$
1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+n(n+2)=\frac{n(n+1)(2 n+7)}{6}
$$

for all positive integers n.

Proof: (informal style; more common in textbooks) The formula given in the statement of the problem is clearly true for $n=1$. Suppose that the formula is valid for some positive integer k. Then

$$
\begin{aligned}
1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+(k+1)(k+3) & =\frac{k(k+1)(2 k+7)}{6}+(k+1)(k+3) \\
& =\frac{k+1}{6}\left(2 k^{2}+7 k+6 k+18\right) \\
& =\frac{(k+1)(k+2)(2 k+9)}{6}
\end{aligned}
$$

showing that the formula is valid for $k+1$ as well. The result now follows by the Principle of Mathematical Induction.

Here are three PMI proofs of this same result, each with one or more errors; be certain you can spot the errors.

Proof: We will use the Principle of Mathematical Induction. Since $1 \cdot 3=(1 \cdot 2 \cdot 9) / 6$, it is clear that the formula works when $n=1$. Suppose that $k \in S$ for some positive integer k. We then have

$$
\begin{aligned}
1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+(k+1)(k+3) & =\frac{k(k+1)(2 k+7)}{6}+(k+1)(k+3) \\
& =\frac{k+1}{6}\left(2 k^{2}+7 k+6 k+18\right) \\
& =\frac{(k+1)(k+2)(2 k+9)}{6}
\end{aligned}
$$

so $k+1 \in S$. By the Principle of Mathematical Induction,

$$
1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+n(n+2)=\frac{n(n+1)(2 n+7)}{6}
$$

for all positive integers n.

Proof: We will use the Principle of Mathematical Induction. Since $1 \cdot 3=(1 \cdot 2 \cdot 9) / 6$, it is clear that the formula works when $n=1$. Now suppose that the formula is valid for every positive integer k. Then

$$
\begin{aligned}
1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+(k+1)(k+3) & =\frac{k(k+1)(2 k+7)}{6}+(k+1)(k+3) \\
& =\frac{k+1}{6}\left(2 k^{2}+7 k+6 k+18\right) \\
& =\frac{(k+1)(k+2)(2(k+1)+7)}{6}
\end{aligned}
$$

so the formula works for all n.

Proof: We will use the Principle of Mathematical Induction. Let S be the set of all positive integers n such that

$$
1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+n(n+2)=\frac{n(n+1)(2 n+7)}{6}
$$

Since $1 \cdot 3=(1 \cdot 2 \cdot 9) / 6$, it is clear that $1 \in S$. Suppose that $k \in S$ for some positive integer k. We then have

$$
\begin{aligned}
1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+(k+1)(k+3) & =\frac{(k+1)(k+2)(2(k+1)+7)}{6} \\
\frac{k(k+1)(2 k+7)}{6}+(k+1)(k+3) & =\frac{(k+1)(k+2)(2 k+9)}{6} \\
\frac{k+1}{6}\left(2 k^{2}+7 k+6 k+18\right) & =\frac{k+1}{6}\left(2 k^{2}+13 k+18\right)
\end{aligned}
$$

This shows that $k+1 \in S$. By the Principle of Mathematical Induction, it follows that $S \in Z^{+}$. Hence,

$$
1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+n(n+2)=\frac{n(n+1)(2 n+7)}{6}
$$

for all positive integers n.

Here are three correct proofs for a different result; study them carefully.

Theorem: For each positive integer n, the integer $3^{2 n+1}+2^{n+2}$ is divisible by 7 .
Proof 1: We will use the Principle of Mathematical Induction. Let S be the set of all positive integers n for which $3^{2 n+1}+2^{n+2}$ is divisible by 7 . When $n=1$, we see that $3^{3}+2^{3}=35$ is divisible by 7 . This shows that $1 \in S$. Now suppose that $k \in S$ for some positive integer k. Since $3^{2 k+1}+2^{k+2}$ is divisible by 7 , there exists an integer q such that $3^{2 k+1}+2^{k+2}=7 q$. We then have (using one of several options)

$$
\begin{aligned}
3^{2 k+3}+2^{k+3} & =3^{2} \cdot 3^{2 k+1}+2 \cdot 2^{k+2} \\
& =7 \cdot 3^{2 k+1}+2\left(3^{2 k+1}+2^{k+2}\right) \\
& =7 \cdot 3^{2 k+1}+2(7 q) \\
& =7\left(3^{2 k+1}+2 q\right)
\end{aligned}
$$

revealing that 7 divides $3^{2 k+3}+2^{k+3}$. This means that $k+1 \in S$. By the Principle of Mathematical Induction, $S=\mathbb{Z}^{+}$. Hence, the integer $3^{2 n+1}+2^{n+2}$ is divisible by 7 for each positive integer n.

Proof 2: We will use the Principle of Mathematical Induction. For each positive integer n, let P_{n} be the statement that $3^{2 n+1}+2^{n+2}$ is divisible by 7 . Since $3^{3}+2^{3}=35$ is divisible by 7 , it is clear that P_{1} is true. Suppose that P_{k} is true for some positive integer k. Since $3^{2 k+1}+2^{k+2}$ is divisible by 7 , there exists an integer q such that $3^{2 k+1}+2^{k+2}=7 q$. We then have (using one of several options)

$$
\begin{aligned}
3^{2 k+3}+2^{k+3} & =3^{2} \cdot 3^{2 k+1}+2 \cdot 2^{k+2} \\
& =9\left(7 q-2^{k+2}\right)+2 \cdot 2^{k+2} \\
& =63 q-7 \cdot 2^{k+2} \\
& =7\left(9 q-2^{k+2}\right)
\end{aligned}
$$

revealing that 7 divides $3^{2 k+3}+2^{k+3}$. This means that P_{k+1} is true. By the Principle of Mathematical Induction, all of the P_{n} statements are true, that is, the integer $3^{2 n+1}+2^{n+2}$ is divisible by 7 for each positive integer n.

Proof 3: The statement is easily seen to be true when $n=1$. Suppose that $3^{2 k+1}+2^{k+2}$ is divisible by 7 for some positive integer k and choose an integer q such that $3^{2 k+1}+2^{k+2}=7 q$. We then have

$$
\begin{aligned}
3^{2 k+3}+2^{k+3} & =3^{2} \cdot 3^{2 k+1}+2 \cdot 2^{k+2} \\
& =9\left(3^{2 k+1}+2^{k+2}\right)-7 \cdot 2^{k+2} \\
& =9(7 q)-7 \cdot 2^{k+2} \\
& =7\left(9 q-2^{k+2}\right)
\end{aligned}
$$

revealing that 7 divides $3^{2 k+3}+2^{k+3}$. By the Principle of Mathematical Induction, the integer $3^{2 n+1}+2^{n+2}$ is divisible by 7 for each positive integer n.

