
Some notes for Section 4.5

One of the most useful and remarkable results in the theory of complex integration is the Cauchy Integral

Formula. This result shows that, under appropriate hypotheses, the values of an analytic function inside a simple

closed contour are determined by the values of the function on the contour. The proof of this result is not difficult;

it requires the Deformation Theorem and the fact that

∫
C

ds

s− z
ds = 2πi when C is any circle centered at z and

traversed once in the positive direction.

Theorem 1: (Cauchy Integral Formula) If f is analytic within and on a positively oriented simple closed

contour C, then

f(z) =
1

2πi

∫
C

f(s)

s− z
ds

for all points z in the interior of C.

Proof: Let z be a point in the interior of C. Since the interior of C is an open set, there exists d > 0 for which the

set {s : |s− z| < d} (a little disk) is contained within the interior of C. Let ε > 0. Since f is continuous at z, there

exists a positive number δ < d such that |f(s)− f(z)| < ε whenever |s− z| ≤ δ. Let Cδ be the positively oriented

circular path {s : |s− z| = δ}. Note that Cδ is inside the contour C and that |f(s)− f(z)| < ε for all s ∈ Cδ. By

the Deformation Theorem (Theorem 8 in Section 4.4), we find that∫
C

f(s)

s− z
ds =

∫
Cδ

f(s)

s− z
ds.

Using the ML inequality (Theorem 5 in Section 4.2), it follows that∣∣∣ 1

2πi

∫
C

f(s)

s− z
ds− f(z)

∣∣∣ =
∣∣∣ 1

2πi

∫
Cδ

f(s)

s− z
ds− 1

2πi

∫
Cδ

f(z)

s− z
ds
∣∣∣

=
1

2π

∣∣∣∫
Cδ

f(s)− f(z)

s− z
ds
∣∣∣

≤ 1

2π
· ε
δ
· 2πδ = ε.

Since this inequality holds for every ε > 0, we conclude that f(z) =
1

2πi

∫
C

f(s)

s− z
ds.

As will be evident shortly, the Cauchy Integral Formula is an important tool in the proofs of a number of

interesting results in complex analysis. However, this formula also makes it easy to evaluate some contour integrals

when the contour is simple and closed. As an illustration, consider∫
C

cos z

z2 + 1
dz,

where C is the positively oriented circle {z : |z − 2i| = 2}. Since the function cos z/(z + i) is analytic within and

on C and i is in the interior of C, we find that∫
C

cos z

z2 + 1
dz =

∫
C

cos z/(z + i)

z − i
dz = 2πi · cos z

z + i

∣∣∣
z=i

= π cos i = π cosh 1.

This integral would be more difficult to evaluate using a parametrization of C.
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The Cauchy Integral Formula shows that all of the values of an analytic function f in the interior of a simple

closed contour are completely determined by the values of f on the contour. Take a moment to ponder the

remarkable nature of this fact: the values on the boundary completely determine the values inside.

Proceeding formally, differentiating both sides of the Cauchy Integral Formula with respect to z yields

f ′(z) =
1

2πi

∫
C

f(s)

(s− z)2
ds;

f ′′(z) =
2

2πi

∫
C

f(s)

(s− z)3
ds;

f ′′′(z) =
6

2πi

∫
C

f(s)

(s− z)4
ds;

f (n)(z) =
n!

2πi

∫
C

f(s)

(s− z)n+1
ds;

where the nth derivative follows by noting the appearance of a pattern. It turns out that this general formula is

indeed correct. It shows that an analytic function is actually infinitely differentiable at each point in its domain of

analyticity. This is an amazing result and certainly not true of real-valued functions. For example, the function

f(x) = x11/3 is differentiable for all values of x but f (4)(0) does not exist. Before proving this formula for derivatives,

we offer two examples.

Problem: Evaluate

∫
Γ

cos(2z)

(z − 1)4
dz, where Γ is the positively oriented rectangle with vertices −i, 3− i, 3 + i, and i.

Solution: Since cos(2z) is an entire function and 1 lies in the interior of Γ, we find that∫
Γ

cos(2z)

(z − 1)4
dz =

2πi

3!
f (3)(1), where f(z) = cos(2z).

Since it is easy to see that f (3)(z) = 8 sin(2z), we find that∫
Γ

cos(2z)

(z − 1)4
dz =

2πi

3!
· 8 sin 2 =

8πi

3
sin 2.

Problem: Solve Example 5 in the textbook using another method.

Solution: The textbook solution uses the Cauchy Integral Formula corresponding to the function and its derivative.

Here is another way to view this result. Referring to the statement of the problem, we find that∫
C

2z + 1

z(z − 1)2
dz =

∫
C

(A
z

+
B

z − 1
+

D

(z − 1)2

)
dz = 2πi(B −A).

You should pause to consider why this is true. [Note a positively oriented circle around 1 and a negatively oriented

circle around 0.] Adding the partial fractions reveals that A+B = 0 since it represents the coefficient of z2. Using

our ‘cover and plug’ method, we find that A = 1 and thus B = −1. With this information, the value of the integral

is easily found to be −4πi.
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Theorem 2: (Cauchy Integral Formula for Derivatives) If f is analytic within and on a positively oriented

simple closed contour C, then f has derivatives of all orders at each point within C and

f (n)(z) =
n!

2πi

∫
C

f(s)

(s− z)n+1
ds

for all z in the interior of C and for all positive integers n.

Proof: Let M be the maximum value of the function f on the closed contour C (this value exists since f is

continuous and C is a compact set) and let L be the length of C. We first prove that the values for f ′ satisfy the

formula given in the theorem. Let z be a point inside C. Since the interior of C is an open set, there exists d > 0

for which the set {s : |s − z| < 2d} is contained within the interior of C. Let ε > 0. Choose a positive number

δ < d for which δ < d3ε/(ML). Suppose that w is any complex number that satisfies 0 < |w − z| < δ. Note that

|s− w| = |(s− z)− (w − z)| ≥ |s− z| − |w − z| ≥ 2d− δ > d

for all s on the contour C. The Cauchy integral formula yields

f(w)− f(z)

w − z
=

1

w − z
· 1

2πi

(∫
C

f(s)

s− w
ds−

∫
C

f(s)

s− z
ds
)

=
1

2πi

∫
C

f(s)

(s− w)(s− z)
ds.

Using the ML inequality (Theorem 5 in Section 4.2) once again, it follows that∣∣∣f(w)− f(z)

w − z
− 1

2πi

∫
C

f(s)

(s− z)2
ds
∣∣∣ =

1

2π

∣∣∣∫
C

( 1

(s− w)(s− z)
− 1

(s− z)2

)
f(s) ds

∣∣∣
=
|w − z|

2π

∣∣∣∫
C

f(s)

(s− w)(s− z)2
ds
∣∣∣

≤ |w − z|
2π

· ML

d(2d)2

<
ML

8πd3
δ <

ML

d3
δ < ε.

Referring to the limit definition of the derivative, we find that

f ′(z) = lim
w→z

f(w)− f(z)

w − z
=

1

2πi

∫
C

f(s)

(s− z)2
ds.

This establishes the result for n = 1.

From here, there are several options. We can proceed with induction; this works but the details do get rather

messy. Another option is to prove that f ′ (as given above) is differentiable on and inside C. This is also messy, but

not too bad. It then follows that f ′ is analytic on and inside C. (The ‘on’ part takes some work also.) Applying

this result to f ′, we find that f ′′ is analytic on and inside C. Since this process can then be continued, it follows

that f has derivatives of all orders at each point on and within C. To establish the formula for f (n)(z), we can

use integration by parts (see Exercise 4.3.11, but this is no different than calculus). Since f (n) is analytic on and

inside C, the Cauchy Integral Formula applied to f (n) gives

f (n)(z) =
1

2πi

∫
C

f (n)(s)

s− z
ds
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for all z inside C. With u = (s− z)−1 and dv = f (n)(s) ds, integration by parts yields

1

2πi

∫
C

f (n)(s)

s− z
ds =

1

2πi

(
(uv)

∣∣∣zT
zI
−
∫
C

v du
)

=
1

2πi

∫
C

f (n−1)(s)

(s− z)2
ds

since the uv part is evaluated over a closed contour, thus giving 0. Using integration by parts a second time with

u = (s− z)−2 and dv = f (n−1)(s) ds yields

1

2πi

∫
C

f (n−1)(s)

(s− z)2
ds =

2

2πi

∫
C

f (n−2)(s)

(s− z)3
ds.

The next two integration by parts steps would give

6

2πi

∫
C

f (n−3)(s)

(s− z)4
ds and

24

2πi

∫
C

f (n−4)(s)

(s− z)5
ds.

From here, we can see that the kth step yields

1

2πi

∫
C

f (n)(s)

s− z
ds =

k!

2πi

∫
C

f (n−k)(s)

(s− z)k+1
ds.

When k = n, we have (since f (0) = f)

1

2πi

∫
C

f (n)(s)

s− z
ds =

n!

2πi

∫
C

f(s)

(s− z)n+1
ds,

as desired.

For the record, it is not necessary to understand each step in these proofs (it is good practice, but not essential).

The important part for now is understanding the result and being able to use the result to solve problems.
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