Write neat, concise, and accurate solutions to each of the problems below-I will not give partial credit for steps I cannot follow. Include all relevant details, use correct notation, and finish problems with a complete sentence when appropriate. No electronic devices are allowed for this exam. Each of the first eight problems is worth 7 points and the last problem is worth 4 points.

1. Carefully state the definition of the derivative of a function f.
2. Find and simplify the derivative of the function f defined by $f(x)=e^{-3 x} \sin (2 x)$.
3. Find an equation for the line tangent to the graph of $y=x^{2}-\ln (4 x-3)$ when $x=1$.
4. Find the maximum and minimum outputs of $f(x)=\frac{\sin x}{2+\cos x}$ on the interval $[0, \pi]$.
5. Consider the function f defined by $f(x)=-2 x^{3}+12 x^{2}+30 x$. Use the first derivative test to show that f has a relative maximum value at some point x_{0}, then find the (x, y) coordinates of the point on the graph that corresponds to this value.
6. Suppose that $f^{\prime}(x)=\frac{x^{3}-12 x^{2}}{x-6}$, where f is some function whose domain is all real numbers except $x=6$. (You are not expected to find the function f.) Find the intervals on which the function f is increasing and those on which it is decreasing. Make careful note as to whether or not the endpoints are included in the intervals.
7. Suppose that g is a function that satisfies $g^{\prime}(t)=-k(g(t)-20), g(0)=90, g(2)=80$, where k is some positive constant. Find the value of k.
8. Let C be the circle of radius 6 centered at the origin. Find the (x, y) coordinates of a point on C for which the quantity $x^{2} y$ has a maximum value.
9. This problem has two short parts.
a) Consider the continuous function f defined $f(x)=e^{x} \tan x$. Since $f(0)=0$ and $f(1) \approx 4.23$, it follows that the equation $e^{x} \tan x=2$ has a solution on the interval $[0,1]$. What theorem guarantees this fact?
b) Write down the derivative formulas for $\tan x$ and $\arctan x$.
end of previous exam: only problems $1,4,5,6,8,9 \mathrm{a}$, and half of 9 b are relevant for our exam.

Here are some other possible questions for the material that we have covered.

1. Let $f(x)=x-3 x^{2 / 3}$. Determine the intervals on which f is increasing and those on which it is decreasing.
2. Let $f(x)=b^{2} x-x^{3}$, where b is a positive constant. Determine the intervals on which f is increasing and those on which it is decreasing.
3. Find the exact value of all the trigonometric functions given that $\tan x=-4$ and $\pi / 2<x<\pi$.
4. Find a cubic polynomial that has a relative minimum output when $x=-2$ and a relative maximum output when $x=5$.
5. Find the maximum and minimum outputs of the function $f(x)=4 x+\frac{3}{3 x-1}$ on the interval $[0.4,2]$.
6. Determine the nature of all the critical inputs for the function $f(x)=x-4 \sqrt{x}$.
7. Find the volume of the largest right circular cylinder that can be inscribed in a sphere of radius r. What fraction of the sphere is occupied by the optimal cylinder?
8. Find and simplify the derivative of $f(x)=x^{2} \sin (2 x)$.
9. Find and simplify the derivative of $G(t)=\sec ^{2}(5 t)$.
10. Find an equation for the line tangent to the curve $y=2 \sin x-3 \cos 2 x$ when $x=\pi / 6$.

Write neat, concise, and accurate solutions to each of the problems below-I will not give partial credit for steps I cannot follow. Include all relevant details, use correct notation, and finish problems with a complete sentence when appropriate. No electronic devices are allowed for this exam. Each problem is worth 6 points.

1. Evaluate $\lim _{x \rightarrow 9} \frac{x^{2}-10 x+9}{\sqrt{x}-3}$.
2. Find and simplify the derivative of the function h defined by $h(x)=\sqrt[3]{3 x^{2}-9 x+10}$.
3. Find an equation for the line tangent to the graph of $y=x+\frac{6}{x}$ at the point when $x=2$.
4. Give one example for each; no explanation is required.
a) a rational number between 4 and 5
b) a rational function f that is not continuous at the points $x=2$ and $x=3$
c) a continuous function g that is not differentiable at $x=-2$
5. Suppose that the height h in feet of a beanstalk after t hours is $h=t^{3}+6 t^{2}+30 t$. When is the rate of growth of the beanstalk 210 feet per hour?
6. Find all of the values of x for which the graph of the function f defined by $f(x)=(5 x+8)^{2}(4 x-15)^{5}$ has a horizontal tangent line.
7. Carefully state the definition of the derivative, then give a one sentence explanation concerning what it tells you about the graph of a function.
8. Use the definition of the derivative to find the derivative of the function f defined by $f(x)=x^{2}-3 x$.
9. Find and simplify the derivative of the function f defined by $f(x)=\frac{x+1}{x^{2}+2 x+3}$.
10. Consider the curve defined by the equation $y=a x^{2}+b$, where a and b are constants. Suppose that the point $(1,5)$ is on this curve and that the tangent line to the graph at this point goes through the point $(7,1)$. Find the values of a and b.
