Math 126
First Exam
Fall 2020
Write neat, concise, and accurate solutions to each of the problems below-I will not give partial credit for steps I cannot follow. Include all relevant steps, use correct notation, give sufficient details, and finish problems with a complete sentence; either in words or with an appropriate equation. Each problem is worth 6 points. If at all possible, keep your solutions to four pages or less.

1. Carefully state the definition of the integral.

The integral of a continuous function f on an interval $[a, b]$, denoted $\int_{a}^{b} f(x) d x$, is defined by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(a+\frac{i(b-a)}{n}\right) \frac{b-a}{n}
$$

2. Evaluate $\int\left(2+x e^{-x^{2}}\right) d x$.

$$
\begin{aligned}
& \int\left(2+x e^{-x^{2}}\right) d x=2 x-\frac{1}{2} e^{-x^{2}}+C . \\
& {[\text { should not need u-sub here] }}
\end{aligned}
$$

3. Evaluate $\int_{0}^{1}\left(6(1-x)^{2}+4 \sqrt{1-x^{2}}\right) d x$.

$$
\begin{aligned}
& \int_{0}^{1}\left(6(1-x)^{2}+4 \sqrt{1-x^{2}}\right) d x \\
= & \int_{0}^{1} 6(1-x)^{2} d x+4 \int_{0}^{1} \sqrt{1-x^{2}} d x \\
= & -\left.2(1-x)^{3}\right|_{0} ^{1}+4\left(\frac{1}{4} \cdot \pi \cdot 1^{2}\right) \\
= & 0-(-2)+\pi \\
= & \pi+2 .
\end{aligned}
$$

4. Carefully state the version of the Fundamental Theorem of Calculus that involves a method for evaluating a definite integral.
If f is continuous on $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where F is any antiderirative of f.
5. Evaluate $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\cos (i \pi /(2 n)) \cdot \frac{\pi}{2 n}\right)$. Noting the definition of the integral,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos (\stackrel{i \cdot \pi / 2}{n}) \cdot \frac{\pi / 2}{n} & =\int_{0}^{\pi / 2} \cos x d x \\
& =\left.\sin x\right|_{0} ^{\pi / 2} \\
& =1
\end{aligned}
$$

6. Evaluate $\int_{1}^{8} \frac{6}{\sqrt[3]{x^{4}}} d x$.

$$
\begin{aligned}
\int_{1}^{8} \frac{6}{\sqrt[3]{x^{4}}} d x & =\int_{1}^{8} 6 x^{-4 / 3} d x \\
& =-\left.18 x^{-\frac{1}{3}}\right|_{1} ^{8} \\
& =-\left.\frac{18}{\sqrt[3]{x}}\right|_{1} ^{8} \\
& =-9-(-18) \\
& =9
\end{aligned}
$$

$$
\int \frac{(\ln x)^{2}}{2 x} d x
$$

$$
\begin{aligned}
\int \frac{(\ln x)^{2}}{2 x} d x & =\frac{1}{2} \int(\ln x)^{2} \cdot \frac{1}{x} d x \\
& =\frac{1}{6}(\ln x)^{3}+C
\end{aligned}
$$

[mental ques and check]
8. Find the area of the region that lies below the curve $y=8 x-x^{2}$ and above the x-axis. Include a sketch of the region.

$$
\begin{aligned}
A=\int_{0}^{8}\left(8 x-x^{2}\right) d x & =\left(8 \cdot \frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)_{0}^{8} \\
& =\frac{1}{2} \cdot 8^{3}-\frac{1}{3} 8^{3} \\
& =\frac{1}{6} \cdot 8^{3} \\
& =\frac{512}{6} \\
& =\frac{256}{3}
\end{aligned}
$$

The area of the regor us $\frac{256}{3}$ square units.
9. Consider the function f defined by $f(x)=4 x+5+\int_{1}^{x} \sqrt{t^{3}+8} d t$. Find an equation for the tangent line to the graph of this function when $x=1$. (Think carefully here!)

$$
\begin{aligned}
& f(x)=4 x+5+\int_{1}^{x} \sqrt{t^{3}+8} d t \\
& \left.f^{\prime}(x)=4+\sqrt{x^{3}+8} \quad \text { by } 5 \sim C \quad f^{\prime} 1\right)=9 \\
& y-9=7(x-1) \quad f^{\prime}(1)=7
\end{aligned}
$$

An equation for the tangent line us $y=7 x+2$.
10. Suppose that $v(t)=\frac{6 t}{\sqrt{t+4}}$ gives the velocity in meters per second of a particle at time t seconds. Find the total distance traveled by the particle during the time interval $0 \leq t \leq 5$.

$$
\begin{aligned}
D & =\int_{0}^{5}|v(t)| d t=\int_{0}^{5} \frac{6 t}{\sqrt{t+4}} d t \\
& =\int_{4}^{9} \frac{6\left(u^{-4}\right)}{\sqrt{u}} d u \\
& =\int_{4}^{9}\left(6 u^{1 / 2}-24 u^{-1 / 2}\right) d u \\
& =\left.\left(4 u^{3 / 2}-48 u^{1 / 2}\right)\right|_{4} ^{9} \\
& =4(27-8)-48(3-2) \\
& =4.19-48 \\
& =76-48 \\
& =28
\end{aligned}
$$

let $u=t+4$
then $d u=d t$

$$
t=u-4
$$

$$
\left\{\begin{aligned}
& u=\sqrt{t+4} \\
& 2 d u=\frac{d t}{\sqrt{t+4}} \\
& t=u^{2}-4 \\
& \int_{2}^{3}\left(12 u^{2}-48\right) d u \\
&=\cdots \\
&=76-48 \\
& 28
\end{aligned}\right\}
$$

The particle travels 28 meters during this time interval.

