1. Suppose that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly independent set of vectors in a vector space V. Determine whether or not the set $\{\mathbf{u}+\mathbf{w}, \mathbf{v}+\mathbf{w}, \mathbf{v}-\mathbf{u}\}$ is linearly independent.
2. Define $T: M_{2 \times 2} \rightarrow \mathcal{P}_{1}$ by $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=(a+d) t+b$. Find a basis for the kernel of T.
3. Find all values of a and b for which the given system is consistent. Your answer should be in the form of an equation.

$$
\begin{array}{r}
x_{1}+2 x_{2}+11 x_{3}=a \\
x_{1}-4 x_{2}+5 x_{3}=7 \\
x_{2}+x_{3}=b
\end{array}
$$

4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Suppose that

$$
T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

Find the standard matrix representing the transformation T.

