1. Suppose that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly independent set of vectors in a vector space V. Determine whether or not the set $\{\mathbf{u}+\mathbf{w}, \mathbf{v}+\mathbf{w}, \mathbf{v}-\mathbf{u}\}$ is linearly independent.
Since $(u+w)-(v+w)+(v-u)=0$, a nontrivial linear combination
I of the rectors gives the serovector. Therefore, the set $\{u+w, v+w, v-u\}$ us linearly dependent.
π Suppers that $a(u+w)+b(v+w)+c(r-u)=0$. Sher
alternate option $(a-c) \bar{u}+(b+c) v+(a+b) w=0$. Since $\{u, v, w\}$ is linearly independent, we must have $a-c=b+c=a+b=0$. Solving this system using a coefficient matrix yields

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Thus shows that there are nontrivial solutions for a, b, and C. Hence, the set $\{u+W, v+W, v-u\}$ us linearly dependent.

$$
M_{2 \times 2}
$$

2. Define $T: M / 22 \rightarrow \mathcal{P}_{1}$ by $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=(a+d) t+b$. Find a basis for the kernel of T.

We need to find all matrices that map to the zero polynomial. So $a+d=0$ and $b=0$ must occur:
$\Gamma\left(\left[\begin{array}{cc}a & 0 \\ c & -a\end{array}\right]\right)=0$ gives all solutions.
since $\left[\begin{array}{cc}a & 0 \\ c & -a\end{array}\right]=a\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]+c\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$,
a brass for the kernel of τ is

$$
\left\{\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right\}
$$

just to illustrate how τ pores: $\tau\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right)=5 t+2$
3. Find all values of a and b for which the given system is consistent. Your answer should be in the form of an equation.

$$
\begin{array}{r}
x_{1}+2 x_{2}+11 x_{3}=a \\
x_{1}-4 x_{2}+5 x_{3}=7 \\
x_{2}+x_{3}=b
\end{array}
$$

We start by writing the augmented matrix and reducing it to echelon form

$$
\left(\begin{array}{cccc}
1 & 2 & 11 & a \\
1 & -4 & 5 & 7 \\
0 & 1 & 1 & b
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 2 & 11 & a \\
0 & -6 & -6 & 7-a \\
0 & 1 & 1 & b
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 2 & 11 & a \\
0 & 1 & 1 & b \\
0 & 0 & 0 & 6 b+7-a
\end{array}\right)
$$

We must have $6 b+7-a=0$ to have solutions.
Therefore, the system is consistent for all values of a and b that satufor $a-6 b=$?
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Suppose that

$$
T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

Find the standard matrix representing the transformation T.
The standard matrix for τ has the form $\left[\tau\left(e_{1}\right) \tau\left(e_{2}\right)\right]$. at is easy to see that

$$
e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and } e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=2\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Since τ us linear, at follows that

$$
\begin{aligned}
& \tau\left(e_{1}\right)=\tau\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)-\tau\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \text { and } \\
& \tau\left(e_{2}\right)=2 \tau\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)-\tau\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right]-\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right] .
\end{aligned}
$$

The standard matrix repesentiry T is $\left[\begin{array}{rr}1 & 0 \\ 1 & -1 \\ 2 & -1\end{array}\right]$.

