Calculus I

Answers to Sample Exam 1

1. Find $\lim_{x\to 4} \frac{\sqrt{x}-2}{x-4}$ or explain why it doesn't exist.

Answer.
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} \frac{\sqrt{x} + 2}{\sqrt{x} + 2} = \lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{1}{(\sqrt{x} + 2)} = 1/4.$$

2. Compute the derivative of $f(x) = \sqrt{x+1}$ directly from the limit definition of the derivative. **Do not** use any shortcuts.

Answer.

$$f'(x) = \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x + 1} - \sqrt{x + 1}}{\Delta x} \frac{\sqrt{x + \Delta x + 1} + \sqrt{x + 1}}{\sqrt{x + \Delta x + 1} + \sqrt{x + 1}}$$

$$= \lim_{\Delta x \to 0} \frac{x + \Delta x + 1 - (x + 1)}{\Delta x (\sqrt{x + \Delta x + 1} + \sqrt{x + 1})}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x (\sqrt{x + \Delta x + 1} + \sqrt{x + 1})}$$

$$= \lim_{\Delta x \to 0} \frac{1}{\sqrt{x + \Delta x + 1} + \sqrt{x + 1}}$$

$$= \frac{1}{2\sqrt{x + 1}}$$

3. Compute $\frac{d}{dt}(t^8 + 6t^7 - 18t^2 + 2t - 1/t)$.

Answer. $8t^7 + 42t^6 - 36t + 2 + 1/t^2$

4. Compute $\frac{d}{dx}x^3\sqrt{x^3+3x^2+5}.$

Answer. $x^3(1/2)(x^3+3x^2+5)^{-1/2}(3x^2+6x)+3x^2\sqrt{x^3+3x^2+5}$

5. Compute $\frac{d}{dx} \frac{1}{(x^2+3)^2}$.

Answer. $-2(x^2+3)^{-3}(2x)$

6. Compute
$$\frac{d}{dx} \frac{5(x^2+3)}{\sqrt{15+x^2}}$$
.

Answer.
$$5 \cdot \frac{2x\sqrt{15+x^2}-(x^2+3)(1/2)(15+x^2)^{-1/2}(2x)}{15+x^2}$$

7. Compute
$$\frac{d}{dx}(\sqrt{x}+x^2)^{47}(x^2+2)$$
.

Answer.
$$47(\sqrt{x}+x^2)^{46}(\frac{1}{2}x^{-1/2}+2x)(x^2+2)+(\sqrt{x}+x^2)^{47}2x$$

8. Compute
$$\frac{d}{dx}\sqrt{x^2+\sqrt{x^3-x}}$$
.

Answer.
$$\frac{1}{2} \left(x^2 + \sqrt{x^3 - x} \right)^{-1/2} \left(2x + \frac{1}{2} \left(x^3 - x \right)^{-1/2} \left(3x^2 - 1 \right) \right)$$

9. Suppose a ball is thrown straight up so that its height at time t is $30t - 16t^2$ meters. How fast is the object going at time t = 1?

Answer. We want to know the derivative of the function $30t - 16t^2$ at t = 1. The derivative is 30 - 32t so at t = 1 the ball is going -2 meters per second.

10. Find an equation for the tangent line to $f(x) = 4x^2$ at x = 1.

Answer. The derivative is 8x, so when x = 1 the slope of the tangent line is 8. Since f(1) = 4, the tangent line is y - 4 = 8(x - 1) or y = 8x - 4.