Calculus II
Sample Exam 3: Chapter 11
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1. Does the series described by 7;)(—1)”211?_5 converge?
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Answer. No. Since lim ———— = _ # 0, the series does not converge.
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2. To what number does Z (7n 31 converge?
n=1

Answer. This is a geometric series missing the first term:
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Answer. Use the integral test, and the substitution v = In z:

im [ =L do— tm [ uwtdu— tim =L = i L L 1
tirélo/g ezt T ), M T N 3 e 0% 3(Ime)? | 3(m2)?  3(n2)?

so the series converges.
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Answer. This “looks like” the harmonic series, since n?/n® = 1/n, so we guess that it

diverges. We’d like to see that the terms are larger than terms that look like 1/n. It is

true that for large enough n:
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because eventually n? — 2 > n? —n?/2 =n?/2 and n®> + n+2 < n+n3 +n3 = 3n3. So

the series diverges because > 1/(6n) diverges.
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5. Does E ( ] ) converge absolutely, converge conditionally, or diverge?
nlnn
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Answer. It converges conditionally. It converges by the alternating series test, but it
oo
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doesn’t converge absolutely because Z —— diverges by the integral test.
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decreasing, the series converges by the alternating series test.

First: Since lim

= 0, and since
n—oo nlnn

, meaning the terms are

Second:
t Int Int
lim dxr = lim — =lim In|u|| = limIn|lnt|—In|ln2| = co.
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6. Does Z — converge?
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Answer. Yes, by the ratio test:
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7. Find the interval of convergence and radius of convergence for —z".
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Answer. Using the ratio test:
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so the radius of convergence is 1/3. When z = 1/3 the series is the harmonic series, so

it diverges; when = —1/3 the series is the alternating harmonic series, so it converges;

thus the interval of convergence is [-1/3,1/3).

8. Find the interval of convergence and radius of convergence for Z Z—n(x —2)".
n=0
Answer. Using the ratio test:
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so the radius of convergence is 2. When z = 0,
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which diverges, by the divergence test. When x = 4,
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which diverges, by the divergence test. Thus, the interval of convergence is (0,4).



Calculus II—Sample Exam 3: Chapter 11

9.

10.

Find a power series representation for z?e®; find the radius of convergence for your series.

Answer. Start with the series for ¢ and multiply by x?:
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Using the ratio test:
. n! 1
lim ——|z| = |z| =0,
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so the radius of convergence is co.
Find a power series representation for cos(x3); find the radius of convergence for your series.

Answer. Starting with the series for the cosine:

and substituting 22 for x:
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Since the series for cosine converges for all numbers, so does the second series, so the

radius of convergence is infinity.



