SAMPLE EXAM 1

When asked to provide a vector as an answer, write it in the form $\langle a, b, c \rangle$.

- 1. Let $\mathbf{a} = \langle 1, 0, -1 \rangle$, $\mathbf{b} = \langle -2, 3, 5 \rangle$. Find $|\mathbf{a}|$, $\mathbf{a} \mathbf{b}$, and a unit vector in the same direction as $\mathbf{a} \mathbf{b}$.
- 2. Let $\mathbf{v} = \langle 5, -1, 6 \rangle$, $\mathbf{w} = \langle -2, 2, -4 \rangle$. Find the cosine of the angle between \mathbf{v} and \mathbf{w} .
- 3. Find a vector perpendicular to both $\langle 1, 2, 2 \rangle$ and $\langle -3, 1, 5 \rangle$.
- 4. Find the vector projection of **a** onto **b**, using $\mathbf{a} = \langle 2, 2, 2 \rangle$ and $\mathbf{b} = \langle 1, -1, -1 \rangle$.
- 5. Find a vector function for the line that is the intersection of the planes x + y + z = 2 and 3x 2y z = -5.
- 6. Find an equation for the plane that is perpendicular to both of the planes x+y+z=2 and 3x-2y-z=-5 and contains the point (1,1,1).
- 7. Using $\mathbf{r}(t) = \langle t^2 + 2, t^2 4t, 2t \rangle$, find an equation for a plane perpendicular to \mathbf{r} at (6, -4, 4).
- 8. Find the curvature of $\mathbf{r}(t) = \langle t^2 + 2, t^2 4t, 2t \rangle$ from the previous problem as a function of t and also find the curvature at (6, -4, 4).
- 9. Suppose the position of an object is given by is $\mathbf{r}(t) = \langle t^2 + 2, t^2 4t, 2t \rangle$. Find the scalar components of acceleration, $a_{\mathbf{T}}$ and $a_{\mathbf{N}}$.
- 10. Suppose an object moves so that its acceleration vector is $\langle t, t^2, \sin t \rangle$, and at t = 0 it is at the point (1, 1, 1) with velocity $\langle -2, 1, 2 \rangle$. Find the vector functions $\mathbf{v}(t)$ and $\mathbf{r}(t)$.