Chapter 16 Sample Exam Solutions

1. Compute $\int_{C} x y d s$, where C is given by $\langle 2 \sin \theta, 2 \cos \theta\rangle, 0 \leq \theta \leq \pi / 2$.

$$
\begin{aligned}
\bar{r} & =\langle 2 \sin \theta, 2 \cos \theta\rangle \\
\bar{r}^{\prime} & =\langle 2 \cos \theta,-2 \sin \theta\rangle \\
\left|\bar{r}^{\prime}\right| & =\sqrt{4 \cos ^{2} \theta+4 \sin ^{2} \theta}=\sqrt{4}=2 \\
d s & =\left|\bar{r}^{\prime}\right| d \theta \\
& \int_{0}^{\pi / 2} 2 \sin \theta 2 \cos \theta 2 d \theta=\left.8 \frac{\sin ^{2} \theta}{2}\right|_{0} ^{\pi / 2}=8 \cdot \frac{1}{2}=4
\end{aligned}
$$

2. Explain how you can tell that $\mathbf{F}=\left\langle 3 x^{2} \cos y,-x^{3} \sin y\right\rangle$ is conservative. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is $\left\langle\cos t, t^{2}\right\rangle, 0 \leq t \leq 1$.
$Q_{x}=-3 x^{2} \sin y, P_{y}=-3 x^{2} \sin y, Q_{x}=P_{y}$, so F is conservator.

$$
\begin{aligned}
\int_{C} \bar{F} \cdot d \bar{r}=\left.f\right|_{(1,0)} ^{(\cos (1), 1)}=\left.x^{3} \cos y\right|_{(1,0)} ^{(\cos (1), 1)} & =\cos ^{3}(1) \cos (1)-1 \cdot 1 \\
& =\cos ^{4}(1)-1
\end{aligned}
$$

$$
\begin{aligned}
& f=\int P d x=\int 3 x^{2} \cos y d x=x^{3} \cos y+0 \\
& f=\int Q d y=\int-x^{3} \sin y d y=x^{3} \cos y+0
\end{aligned}
$$

3. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\left\langle x^{2} y^{2}, 3 x+x y\right\rangle$ and C is the square $(0,0) \rightarrow(1,0) \rightarrow$ $(1,1) \rightarrow(0,1) \rightarrow(0,0)$.

Use Green's Theorem:

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} Q_{x}-P_{y} d y d x=\int_{0}^{1} \int_{0}^{1} 3+y-2 x^{2} y d y d x \\
& =\int_{0}^{1} 3 y+\frac{y^{2}}{2}-\left.2 x^{2} \frac{y^{2}}{2}\right|_{0} ^{1} d x=\int_{0}^{1} 3+\frac{1}{2}-x^{2} d x \\
& =3 x+\frac{x}{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=3+\frac{1}{2}-\frac{1}{3}
\end{aligned}
$$

4. Convert $\oint_{C} \mathbf{F} \cdot \mathbf{N} d s$, to a double integral that is ready to evaluate, including the limits, but do not evaluate the integral. The curve C is the circle $x^{2}+y^{2}=1$ and $\mathbf{F}=\left\langle a x^{2}, b y^{2}\right\rangle$.

$$
\begin{aligned}
\oint_{C} \bar{F} \cdot \bar{N} d s & =\iint_{D} \nabla \cdot F d A=\iint_{D} 2 a x+2 b y d y d x \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 2 a x+2 b y d y d x
\end{aligned}
$$

5. Compute $\nabla \times \mathbf{F}, \mathbf{F}=\langle x \cos z, y \cos z, \sin z\rangle$. Is \mathbf{F} conservative? Why or why not?

$$
\begin{aligned}
& \langle\partial / \partial x, \partial / \partial y, \partial / \partial z\rangle \\
x & \langle x \cos z, y \cos z, \sin z\rangle \\
= & \langle 0-y(-\sin z),-x \sin z-0,0-0\rangle \\
= & \langle y \sin z,-x \sin z, 0\rangle
\end{aligned}
$$

\bar{F} is not conservative because $\nabla \times \bar{F} \neq \overrightarrow{0}$
6. Compute $\nabla \cdot \mathbf{F}, \mathbf{F}=\langle x \cos z, y \cos z, \sin z\rangle$.

$$
\begin{aligned}
&\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\langle x \cos z, y \cos z, \sin z\rangle \\
&=\cos z+\cos z+\cos z=3 \cos z
\end{aligned}
$$

7. Set up a double integral for the surface area of $\mathbf{r}=\left\langle u^{2}, u^{2}-v, v^{3}\right\rangle, 0 \leq u \leq 1$, $0 \leq v \leq 1$.

$$
\begin{gathered}
\bar{r}=\left\langle u^{2}, u^{2}-v, v^{3}\right\rangle \quad \text { Surf. area }=\int_{D}\left|\bar{r}_{u} \times \bar{r}_{v}\right| d u d v \\
\bar{r}_{u}=\langle 2 u, 2 u, 0\rangle \\
\bar{r}_{v}=\left\langle 0,-1,3 v^{2}\right\rangle \\
\bar{r}_{u} \times \bar{r}_{v}=\left\langle 6 u v^{2},-6 u v^{2},-2 u\right\rangle \\
\text { S.A. }=\int_{0}^{1} \int_{0}^{1} \sqrt{36 u^{2} v^{4}+36 u^{2} v^{4}+4 u^{2}} d u d v
\end{gathered}
$$

8. Compute $\iint_{D} \mathbf{F} \cdot \mathbf{N} d S$, where $\mathbf{F}=\langle y, z, x\rangle$ and D is the surface $z=x^{2}+y^{2}$ above the interior of the square with corners $(0,0),(1,0),(1,1),(0,1)$, oriented up.

$$
\begin{aligned}
\bar{r}= & \left\langle u, v, u^{2}+v^{2}\right\rangle \\
\bar{r}_{u}= & \langle 1,0,2 u\rangle \\
\bar{r}_{v}= & \langle 0,1,2 v\rangle \\
\bar{r}_{u} \times \bar{r}_{v}= & \langle-2 u,-2 v, \imath\rangle \\
& \int_{0}^{1} \int_{0}^{1}\left\langle v, u^{2}+v^{2}, u\right\rangle \cdot\langle-2 u,-2 v, 1\rangle d v d u=\int_{0}^{1} \int_{0}^{1}-2 u v-2 v u^{2}-2 v^{3}+u d v d u \\
= & \int_{0}^{1}-u v^{2}-v^{2} u^{2}-2 \frac{v^{4}}{4}+\left.u v\right|_{0} ^{1} d u=\int_{0}^{1}-u-u^{2}-\frac{1}{2}+u d u \\
= & -\frac{u^{2}}{2}-\frac{u^{3}}{3}-\frac{1}{2} u+\left.\frac{u^{2}}{2}\right|_{0} ^{1}=-\frac{1}{2}-\frac{1}{3}-\frac{1}{2}+\frac{1}{2}=-\frac{1}{2}-\frac{1}{3}=\frac{-5}{6}
\end{aligned}
$$

9. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\left\langle z^{2}, y, x\right\rangle$ and C is the triangle $(1,0,0) \rightarrow(0,1,0) \rightarrow$ $(0,0,1) \rightarrow(1,0,0)$.

Stokes's Theorem

$$
\bar{r}_{v}=\langle 0,1,-1\rangle
$$

$$
\begin{aligned}
& \langle\partial / \partial x, \partial y, \partial z\rangle \\
x & \left\langle z^{2}, y, x\right\rangle \\
= & \langle 0-0,2 z-1,0-0\rangle \\
= & \langle 0,2 z-1,0\rangle
\end{aligned}
$$

$$
\bar{F}=\left\langle u, v, \underline{1-u-v\rangle} \quad x\left\langle z^{2}, y, x\right\rangle\right.
$$

$$
\bar{r}_{n}=\langle 1,0,-1\rangle
$$

$$
x+y+z=1
$$

$$
z=1-x-y
$$

$$
\begin{aligned}
& \bar{r}_{u} \times \bar{r}_{j}=\langle 1,1,1\rangle \\
& \int_{C} \bar{F} \cdot d \bar{r}=\int_{D} \int_{D}(17 \times \bar{F}) \cdot\left\langle\bar{r}_{u} \times \bar{r}_{v}\right\rangle d v d u=\iint_{D}\langle 0,2(1-u-v)-1,0\rangle \cdot\langle 1,1,1\rangle d v d u \\
& =\int_{0}^{1} \int_{0}^{1-u} 2-2 u-2 v-1 d v d u \\
& =\int_{0}^{1} v-2 u v-\left.v^{2}\right|_{0} ^{1-u} d u \\
& =\int_{0}^{1}(1-u)-2 u(1-u)-(1-u)^{2} d u \\
& =\int_{0}^{1} 1-u-2 u+2 u^{2}-\left(1-2 u+u^{2}\right) d u \\
& =\int_{0}^{1} x-3 \mu+2 \mu^{2}-1+2 u-x^{2} d u \\
& =\int_{0}^{1}-u+u^{2} d u=\frac{-u^{2}}{2}+\left.\frac{u^{3}}{3}\right|_{0} ^{1}=-\frac{1}{2}+\frac{1}{3}=\frac{-1}{6}
\end{aligned}
$$

10. Compute $\iint_{D} \mathbf{F} \cdot \mathbf{N} d S$, where $\mathbf{F}=\left\langle x^{2} z, z^{2} y, y^{2} x\right\rangle$ and D is the surface of the cube with corners $(0,0,0),(1,0,0),(1,0,1),(0,0,1),(0,1,0),(1,1,0),(1,1,1),(0,1,1)$, oriented outward.

$$
\begin{aligned}
& \iint_{D} \bar{F} \bar{N} d S=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} 2 x z+z^{2}+0 d z d y d x \\
& \nabla \cdot \bar{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\left\langle x^{2} z, z^{2} y, y^{2} x\right\rangle \\
& =\int_{0}^{1} 1 \quad x z^{2}+\left.\frac{z^{3}}{3}\right|_{0} ^{1} d y d x=\int_{0}^{1} \int_{0}^{1} x+\frac{1}{3} d y d x \\
& =\int_{0}^{1} x y+\left.\frac{y}{3}\right|_{0} ^{1} d x=\int_{0}^{1} x+\frac{1}{3} d x=\frac{x^{2}}{2}+\left.\frac{x}{3}\right|_{0} ^{1}
\end{aligned}
$$

