
Find the mistake!
Theorem. Every planar graph can be colored with 4 colors.
Proof.

The proof is by induction on the number of vertices n; when n ≤ 4 this is trivial.
Now suppose G is planar on more than 4 vertices; we know some vertex v has degree at most 5. By the

induction hypothesis, G− v can be colored with 4 colors. Color the vertices of G, other than v, as they are
colored in a 4-coloring of G− v. If d(v) ≤ 3, then v can be colored with one of the 4 colors to give a proper
coloring of G with 4 colors.

Now suppose d(v) = 4. If the four neighbors of v are colored with three or fewer of the colors, then
again v can be colored to give a proper coloring of G with 4 colors. So suppose the four neighbors are colored
with 4 colors as shown:
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Suppose that in G there is a path from v1 to v3, and that the vertices along this path are alternately
colored red and green; call such a path a red-green alternating path. Then together with v, this path makes
a cycle with v2 on the inside and v4 on the outside, or vice versa. This means there cannot be a blue-purple
alternating path from v2 to v4. Supposing that v2 is inside the cycle, we change the colors of all vertices
inside the cycle colored purple to blue, and all blue vertices are recolored purple. This is still a proper
coloring of all vertices of G except v, and now no neighbor of v is blue, so by coloring v blue we obtain a
proper coloring of G.

If there is no red-green alternating path from v1 to v3, then we recolor vertices as follows: Change the
color of v1 to green. Change all green neighbors of v1 to red. Continue to change the colors of vertices from
red to green or green to red until there are no conflicts, that is, until a new proper coloring is obtained.
Because there is no red-green alternating path from v1 to v3, the color of v3 will not change. Now no neighbor
of v is colored red, so by coloring v red we obtain a proper coloring of G.

Now suppose d(v) = 5. If the five neighbors of v are colored with three or fewer of the colors, then again
v can be colored to give a proper coloring of G with 4 colors.

If the five neighbors are colored with four colors, there are two cases. First, suppose that two vertices
with the same color are positioned next to each other, as shown here:
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This is very similar to the case d(v) = 4, and left to the reader.
Finally, suppose that the coloring is like this:
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If there is no alternating red-green path from v1 to v3, we may recolor v1 green, and proceed as before,
changing vertices to red or green as required, and then v may be colored red. If there is such a path, but
there is no alternating red-purple path from v1 to v4, we may do the same, exchanging red and purple at
vertices beginning at v1.

If this fails, there is both an alternating red-green path from v1 to v3 and an alternating red-purple
path from v1 to v4, shown as dashed curves in the figure. Now starting at v2, we may swap colors blue and
purple, never crossing the red-green path, so that v4 is still purple; now v2 is purple. Starting at v5, we may
swap blue and green, never crossing the red-purple path; v3 is still green and now v5 is green. Then v may
be colored blue.
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