Find the mistake!

Theorem. Every planar graph can be colored with 4 colors.

Proof.

The proof is by induction on the number of vertices n; when $n \leq 4$ this is trivial.
Now suppose G is planar on more than 4 vertices; we know some vertex v has degree at most 5 . By the induction hypothesis, $G-v$ can be colored with 4 colors. Color the vertices of G, other than v, as they are colored in a 4-coloring of $G-v$. If $\mathrm{d}(v) \leq 3$, then v can be colored with one of the 4 colors to give a proper coloring of G with 4 colors.

Now suppose $\mathrm{d}(v)=4$. If the four neighbors of v are colored with three or fewer of the colors, then again v can be colored to give a proper coloring of G with 4 colors. So suppose the four neighbors are colored with 4 colors as shown:

Suppose that in G there is a path from v_{1} to v_{3}, and that the vertices along this path are alternately colored red and green; call such a path a red-green alternating path. Then together with v, this path makes a cycle with v_{2} on the inside and v_{4} on the outside, or vice versa. This means there cannot be a blue-purple alternating path from v_{2} to v_{4}. Supposing that v_{2} is inside the cycle, we change the colors of all vertices inside the cycle colored purple to blue, and all blue vertices are recolored purple. This is still a proper coloring of all vertices of G except v, and now no neighbor of v is blue, so by coloring v blue we obtain a proper coloring of G.

If there is no red-green alternating path from v_{1} to v_{3}, then we recolor vertices as follows: Change the color of v_{1} to green. Change all green neighbors of v_{1} to red. Continue to change the colors of vertices from red to green or green to red until there are no conflicts, that is, until a new proper coloring is obtained. Because there is no red-green alternating path from v_{1} to v_{3}, the color of v_{3} will not change. Now no neighbor of v is colored red, so by coloring v red we obtain a proper coloring of G.

Now suppose $\mathrm{d}(v)=5$. If the five neighbors of v are colored with three or fewer of the colors, then again v can be colored to give a proper coloring of G with 4 colors.

If the five neighbors are colored with four colors, there are two cases. First, suppose that two vertices with the same color are positioned next to each other, as shown here:

This is very similar to the case $\mathrm{d}(v)=4$, and left to the reader.
Finally, suppose that the coloring is like this:

If there is no alternating red-green path from v_{1} to v_{3}, we may recolor v_{1} green, and proceed as before, changing vertices to red or green as required, and then v may be colored red. If there is such a path, but there is no alternating red-purple path from v_{1} to v_{4}, we may do the same, exchanging red and purple at vertices beginning at v_{1}.

If this fails, there is both an alternating red-green path from v_{1} to v_{3} and an alternating red-purple path from v_{1} to v_{4}, shown as dashed curves in the figure. Now starting at v_{2}, we may swap colors blue and purple, never crossing the red-green path, so that v_{4} is still purple; now v_{2} is purple. Starting at v_{5}, we may swap blue and green, never crossing the red-purple path; v_{3} is still green and now v_{5} is green. Then v may be colored blue.

