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1
The 15 Puzzle

The well-known 15-puzzle consists of 15 sliding squares in a 4 × 4 grid. The object is

typically to return a scrambled puzzle to the configuration shown below, or to produce

some other specified pattern from this configuration.

A legal move in the puzzle consists of sliding a square into the blank spot. You can

play the game here.

Viewed as a permuation of 16 items (the 15 squares plus the blank spot), this is the

transposition of the blank with another item. If the blank spot is returned to the bottom

right corner after a series of such moves, the number of moves must be even, and hence

any pattern produced in this way must be an even permutation. For example, we cannot

produce the pattern in which the 14 and 15 squares are interchanged and all other squares

remain in their original places, since that is an odd permutation. This leaves open the

question of whether all even permutations can be produced by a sequence of legal moves;

as we will show, the answer is yes. Our proof is essentially that of Aaron Archer [1].

5

http://www.archimedes-lab.org/game_slide15/slide15_puzzle.html
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We begin by relabeling the puzzle pieces for convenience:
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The new numbering follows the path shown by dashed lines. We now want to show

that all even permutations of this starting configuration can be achieved.

We define nine simple permutations that can be achieved as follows: for each, swap

the blank along the dashed path until arriving at one of the squares 6, 8, 10, 12, 14, 16

(the bottom right square, that is, the blank doesn’t move at all). Now swap the blank up,

then swap it along the dashed path back to its original position. For example, if we stop

at square 12 we get this:
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In this permuation, 1 through 4 and 12 through 15 are in their original positions. The

permutation is a single odd cycle, (11, 10, 9, 8, 7, 6, 5). In the same way we produce 5 other

cycles:
p1 = (5, 4, 3)

p2 = (7, 6, 5, 4, 3, 2, 1)

p3 = (9, 8, 7)

p4 = (11, 10, 9, 8, 7, 6, 5)

p5 = (13, 12, 11)

p6 = (15, 14, 13, 12, 11, 10, 9)
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Now we note that
p22p

2
1p

−2
2 = (1, 2, 3)

p12p
2
1p

−1
2 = (2, 3, 4)

p21 = (3, 4, 5)

p−1
2 p21p

1
2 = (4, 5, 6)

p24p
2
3p

−2
4 = (5, 6, 7)

p14p
2
3p

−1
4 = (6, 7, 8)

p23 = (7, 8, 9)

p−1
4 p23p

1
4 = (8, 9, 10)

p26p
2
5p

−2
6 = (9, 10, 11)

p16p
2
5p

−1
6 = (10, 11, 12)

p25 = (11, 12, 13)

p−1
6 p25p

1
6 = (12, 13, 14)

p−2
6 p25p

2
6 = (13, 14, 15)

Thus, we can produce any 3-cycle of the form (i, i+1, i+2). Now a lemma and a theorem

will finish things off.

LEMMA 1.0.1 The 3-cycles of the form (i, i+1, i+2) in Sn generate all of the 3-cycles

in Sn.

Proof. The proof is by induction on n. The base case is n = 3. S3 contains just two

3-cycles, (1, 2, 3) and (1, 3, 2). Since (1, 3, 2) = (1, 2, 3)2, we’re done.

Now suppose n ≥ 4. We have 3-cycles (1, 2, 3), (2, 3, 4), . . . , (n − 3, n − 2, n − 1), (n −
2, n−1, n). By the induction hypothesis, (1, 2, 3), (2, 3, 4), . . . , (n−3, n−2, n−1) generates

all 3-cycles in Sn−1. Also by the induction hypothesis, the cycles (2, 3, 4), . . . , (n− 3, n−
2, n − 1), (n − 2, n − 1, n) generate all 3-cycles in the symmetric group on the elements

{2, 3, . . . , n}. Thus, we can generate all 3-cycles except possibly a 3-cycle of the form

(1, x, n) or (1, n, x) = (1, x, n)2. Of course, if we can generate the former we can generate

the latter. Let y /∈ {1, x, n}. Then we know we can generate (1, x, y) and (y, x, n); then

(1, x, y)(y, x, n) = (1, x, n). This finishes the proof.

THEOREM 1.0.2 The 3-cycles in Sn generate An.

Proof. Suppose σ ∈ An, so σ is a product of an even number of transpositions: σ =

(a1, b1)(a2, b2) · · · (ak, bk), with k even. Consider an adjacent pair (ai−1, bi−1)(ai, bi) =

(a, b)(c, d) with i even. If {a, b} = {c, d} then (a, b)(c, d) is the identity and trivially a
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product of 3-cycles. If a = d and a, b, c are distinct, then (a, b)(c, a) = (a, c, b). Finally, if

a, b, c, d are distinct, (a, b)(c, d) = (a, b, c)(b, c, d). Thus σ is a product of 3-cycles.

Putting these results together with the fact that all 3-cycles of the form (i, i+1, i+2)

can be realized in the 15 puzzle, we see that all even permutations can be realized.



2
A generalization

2.1 The puzzle

Suppose G is a simple graph on n + 1 vertices, and that the vertices have been labeled

with [n] = {1, 2, 3, . . . , n}, leaving one vertex v unlabeled. A legal move is to slide a label

from a neighbor w of v to v. The goal is to produce a particular lableling from a given

initial labeling.

For example, if G is the labeled graph below, we have the 15-puzzle.
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Figure 2.1.1 The 15-puzzle as a graph puzzle.

More formally, a labeling is a bijection f :V (G) → [n] ∪ {∅}. Two labelings f and g

are adjacent if either may be obtained from the other by a legal move; that is, if f(v) = ∅,
and w is a neighbor of v, g = f ◦ (v, w) = f(v, w), where (v, w) is the bijection transposing

v and w. (We will generally leave out the composition operator “◦”.) Thus g(v) = f(w),

g(w) = f(v) = ∅, and otherwise g(x) = f(x).

9
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We define a new simple graph puz(G) as follows: the vertex set V (puz(G)) contains

all labelings of G, and two labelings are adjacent in puz(G) if and only if they are adjacent

as defined in the previous paragraph. Now given initial labeling f and goal labeling g, the

question we want to answer is: Are f and g in the same connected component of puz(G)?

Our principal result will be that for almost all 2-connected graphs G, puz(G) has one or

two connected components, and when there are two, we provide an easy way to determine

when f and g are in the same component. The proof is due to R. M. Wilson [2].

Exercises 2.1.

1. Prove that from the “standard” position shown in figure 2.1.1 it is not possible to produce
the position shown below.
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2.2 Preliminaries

A path in a graph G is a sequence p = (v0, . . . , vk) of vertices such that vi is adjacent

to vi+1; the length of the path is k. It is a simple path if the vertices are distinct, or if

{v0, . . . , vk−1} are distinct and vk = v0, in which case it is a simple closed path. We denote

the path (vk, . . . , v0) by p, the reverse of p.

Given path p, define a permutation σp:V (G) → V (G) by

σp = (vk, vk−1) · · · (v2, v1)(v1, v0) = (vk, vk−1, . . . , v1, v0).

PROPOSITION 2.2.1 Labelings f and g of G are in the same component of puz(G)

if and only if f = gσp for some path p from f−1(∅) to g−1(∅).

Proof. Given

f = g(g−1(∅), vk−1)(vk−1, vk−2) · · · (v1, f−1(∅)),

let

hi = g(g−1(∅), vk−1) . . . (vi+1, vi),
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so that
g

hk−1 = g(g−1(∅), vk−1),

hk−2 = hk−1(vk−1, vk−2),

...

h1 = h2(v2, v1),

f = h1(v1, f
−1(∅))

is a path from g to f in puz(G).

If f and g are in the same component, then there are permutations h1, . . . , hk−1

such that hk−1 = g(g−1(∅), vk−1), hk−2 = hk−1(vk−1, vk−2),. . . , h1 = h2(v2, v1), f =

h1(v1, f
−1(∅)). Thus, with p = (f−1(∅), v1, v2, . . . , vk−1, g

−1(∅)), f = gσp.

DEFINITION 2.2.2 Let Γ(v, w) = ΓG(v, w) be the set of all permutations σp where p

is a path from v to w. We use Γ(v) = ΓG(v) to denote Γ(v, v).

DEFINITION 2.2.3 If p is a path from u to v, and q is a path from v to w, we denote

by pq the path from u to w consisting of p followed by q.

The following lemma is easy.

LEMMA 2.2.4 σqσp = σpq; σ
−1
p = σp.

PROPOSITION 2.2.5 For all v of G, Γ(v) is a group of permutations, all of which

fix v. If p is a path from v to w, then Γ(v, w) = σpΓ(v) = Γ(w)σp, and consequently

Γ(w) = σpΓ(v)σ
−1
p .

Proof. It is easy to check that Γ(v) is a group.

Suppose q is a path from v to w. Then σq = σpσpσq, and since σpσq = σqp ∈ Γ(v),

Γ(v, w) ⊆ σpΓ(v).

Suppose q is a path from v to v. Then σpσq = σqp ∈ Γ(v, w), so Γ(v, w) ⊇ σpΓ(v).

Thus Γ(v, w) = σpΓ(v).

The proof that Γ(v, w) = Γ(w)σp is essentially identical.

Recall that the symmetric group on a set X = {x1, . . . , xn} is the group of all permu-

tations of X, which we denote S(X), and the alternating group on X is the set of all even

permutations on X, denoted A(X).

Of particular interest will be the theta graphs, or θ-graphs. A θ-graph consists of a

cycle plus an additional path whose endpoints are two distinct vertices, say v and w, of

the cycle. The graph thus consists of three internally disjoint paths from v to w, with a,
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b, and c internal vertices. We will say this is the θ-graph of type (a, b, c), and without loss

of generality, we usually ensure a ≥ b ≥ c. We will need to single out a particular θ-graph,

θ0, of type (2, 2, 1):
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Most of our effort will be in proving the following lemma.

LEMMA 2.2.6 Let G be a simple 2-connected graph on n vertices, other than a cycle

or the graph θ0. Then, for any vertex v of G, Γ(v) is the symmetric group on V (G)\{v},
unless G is bipartite, in which case Γ(v) is the alternating group on V (G)\{v}.

Our principal theorem is

THEOREM 2.2.7 Let G be a simple 2-connected graph on n vertices, other than a

cycle or the graph θ0. Then puz(G) is connected unless G is bipartite. If G is bipartite,

puz(G) has exactly two components, and if labelings f and g have unoccupied vertices at

distance d from each other, then f and g are in the same component if and only if g−1f is

a permutation of V (G) with the same parity as d.

Proof. Let G be a simple 2-connected graph and v a vertex of G. Each component of

puz(G) contains an f with f(v) = ∅. Labelings f and g, with g(v) = ∅, are in the same

component if and only if f = gσp, where p is a path from v to v. That is, f and g are in

the same component if and only if g−1f ∈ Γ(v).

Fix a labeling h with h(v) = ∅. For any labeling g, let τg = h−1g. The map g 7→ τg
is a bijection from the set of labelings that map v to ∅ to S(V (G)\{v}). Now we have

g−1f ∈ Γ(v) if and only if (hτg)
−1hτf ∈ Γ(v) if and only if τ−1

g τf ∈ Γ(v) if and only if

τfΓ(v) = τgΓ(v). Thus, the components of puz(G) are in 1–1 correspondence with the

cosets of Γ(v) in S(V (G)\{v}).
By lemma 2.2.6, Γ(v) is either S(V (G)\{v}) or A(V (G)\{v}). If the former, there is

one coset and hence puz(G) is connected.

If Γ(v) = A(V (G)\{v}), suppose that f(v) = g(w) = ∅, and let p be a path from v to

w. Then f and g are in the same component if and only if g−1f ∈ Γ(v, w) = σpΓ(v) if and

only if g−1f and σp have the same parity if and only if g−1f and the length of p have the

same parity.

The proof of lemma 2.2.6 is by induction. By proposition 2.2.5, it suffices to prove the

lemma for a single v. Also, it will suffice to show that A(V (G)\{v}) ⊆ Γ(v), since Γ(v)
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contains an odd permutation if and only if G contains an odd length closed path if and

only if G is not bipartite.

Exercises 2.2.

1. Prove lemma 2.2.4.

2. Prove that Γ(v) is a group, as claimed in proposition 2.2.5.

3. Let G be a cycle on n vertices. How many components are in puz(G)? What is Γ(v)?

2.3 Lemmas

LEMMA 2.3.1 Let X be a finite set, |X| ≥ 3, x, y ∈ X. Then the 3-cycles C =

{(x, y, z)|z ∈ X\{x, y}} generate A(X).

Proof. A 3-cycle is an even permutation, so the group G generated by C is con-

tained in A(X). Suppose σ ∈ A(X), so σ is a product of an even number of transpo-

sitions, σ = (x1, y1) · · · (xk, yk). Any transposition (a, b) with y /∈ {a, b} can be writ-

ten (a, b) = (y, a)(y, b)(y, a), so σ can be written as σ = (y, a1)(y, a2) · · · (y, am), m

even, by replacing each (xi, yi) not containing y with a product of three transpositions.

Hence σ = (y, a2, a1)(y, a4, a3) · · · (y, am, am−1), since (y, a)(y, b) = (y, b, a). If a2i−1 =

x, (y, a2i, a2i−1) = (x, y, a2i). If a2i = x, (y, a2i, a2i−1) = (x, y, a2i−1)
2. Otherwise,

(y, a2i, a2i−1) = (x, y, a2i)(x, y, a2i−1)(x, y, a2i)
2. Thus, σ can be written as a product

of 3-cycles of the form (x, y, z), so A(X) ⊆ G.

DEFINITION 2.3.2 If σ ∈ S(X), the support of σ, denoted ∥σ∥, is {x ∈ X|σ(x) ̸=
x}.

DEFINITION 2.3.3 A subgroup H ≤ S(X) is transitive on X if for all x, y ∈ X

there is a σ ∈ H such that σ(x) = y.

DEFINITION 2.3.4 If Σ ⊆ S(X), ⟨Σ⟩ is the subgroup of S(X) generated by Σ.

LEMMA 2.3.5 Suppose Σ is a set of 3-cycles in S(X), |X| ≥ 3. Then the following are

equivalent.

1. ⟨Σ⟩ = A(X)

2. ⟨Σ⟩ is transitive on X.

Proof. If H ≤ S(X) and Y ⊆ X, let H|Y = {σ ∈ H|∥σ∥ ⊆ Y }. H|Y is a subgroup of

S(X) but we interpret it as a subgroup of S(Y ).
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It is easy to see that (1) implies (2). Suppose that Σ has property 2. Let Y ⊆ X

such that |Y | ≥ 3, ⟨Σ⟩|Y = A(Y ), and Y is maximal with these properties. We show that

Y = X, which finishes the proof.

There is a set Y with the first two properties: Let σ = (a, b, c) ∈ Σ, and let Y =

{a, b, c}. Then ⟨Σ⟩|Y = {e, (a, b, c), (a, c, b)} = A(Y ). Now let Y be a maximal set with

these properties, and suppose that Y ̸= X.

Since Σ has property 2, ⟨Σ⟩ contains a permutation σ that maps an element of Y to

an element of X\Y . Therefore, Σ contains a 3-cycle that maps an element of Y to an

element of X\Y . This 3-cycle has one of two forms: (x, y, z) with x, y ∈ Y and z /∈ Y , or

(x, y, z) with z ∈ Y and x, y /∈ Y .

In the first case, since ⟨Σ⟩|Y = A(Y ), ⟨Σ⟩ contains all 3-cycles (x, y, t), t ∈ Y . Thus

⟨Σ⟩ contains all 3-cycles (x, y, t), t ∈ Y ∪ {z}. By lemma 2.3.1, ⟨Σ⟩|Y ∪{z} = A(Y ∪ {z})
contradicting the maximality of Y .

In the second case, for each t ∈ Y , ⟨Σ⟩|Y contains a permutation σ such that σ(z) = t,

because ⟨Σ⟩|Y = A(Y ). Hence σ(xyz)σ−1 = (xyt) ∈ ⟨Σ⟩. Since this is true for every t ∈ Y ,

⟨Σ⟩|Y ∪{x,y} = A(Y ∪ {x, y}), again by lemma 2.3.1, which is again a contradiction.

DEFINITION 2.3.6 A permutation group G on X, |X| ≥ 3 is primitive if it preserves

no non-trivial partition of X. (The single set X and the collection of all singleton subsets

are the trivial partitions. G preserves a partition if every σ ∈ G induces a permutation of

the sets of the partition.)

DEFINITION 2.3.7 A permutation group G on X is doubly transitive if it is tran-

sitive and for every x, y, z ∈ X, with x /∈ {y, z}, there is a σ ∈ G such that σ(x) = x and

σ(y) = z.

It is easy to see that if G is doubly transitive then it is primitive.

LEMMA 2.3.8 Suppose G is a primitive transitive permutation group on X, and G

contains a 3-cycle. Then A(X) ⊆ G.

Proof. Let Σ be the set of 3-cycles in G. We claim that G preserves the orbits of ⟨Σ⟩.
First, we show that ⟨Σ⟩ ◁ G. Suppose σ ∈ ⟨Σ⟩, that is, σ is a product of 3-cycles. Let

τ ∈ G; we need to show that τστ−1 ∈ ⟨Σ⟩. Write

τστ−1 = τc1c2c3 · · · ckτ−1 = τc1ττ
−1c2ττ

−1c3ττ
−1 · · · ττ−1ckτ

−1,

where the ci are 3-cycles. Now it suffices to show that τciτ
−1 is a 3-cycle. It is easy to

verify that τ(a, b, c)τ−1 = (τ(a), τ(b), τ(c)).

Now suppose that τ ∈ G, that X1 and X2 are orbits of ⟨Σ⟩, that x ∈ X1, and that

τ(x) ∈ X2. We need to show that τ(X1) = X2. Suppose that y ∈ X1, so there is a



2.3 Lemmas 15

σ ∈ ⟨Σ⟩ such that σ(x) = y. Then τ(y) = τστ−1(τ(x)). Since τστ−1 ∈ ⟨Σ⟩, τ(y) ∈ X2, so

τ(X1) ⊆ X2.

If z ∈ X2, there is a σ ∈ ⟨Σ⟩ such that στ(x) = z. Then z = στ(x) = τ(τ−1στ(x)),

and since τ−1στ ∈ ⟨Σ⟩, τ−1στ(x) ∈ X1, and so z ∈ τ(X1). Thus, τ(X1) ⊇ X2.

Since G is primitive and preserves the orbits of ⟨Σ⟩, the orbits must form a trivial

partition of X. Since ⟨Σ⟩ contains a 3-cycle, the orbits cannot be the singletons, so there

must be a single orbit, all of X. Thus, ⟨Σ⟩ is transitive and by lemma 2.3.5, A(X) = ⟨Σ⟩ ⊆
G.

LEMMA 2.3.9 Let X = {y, a1, a2, . . . , an, z, b1, b2, . . . , bm}, n ≥ m ≥ 0, and let

π = (a1, a2, . . . , an, z, b1, b2, . . . , bm)

ρ = (b1, b2, . . . , bm, y, a1, a2, . . . , an).

Then ⟨π, ρ⟩ = S(X) if n+m is odd and ⟨π, ρ⟩ = A(X) if n+m is even, unless

1. n = 2, m = 1,

2. n = m = 2, or

3. n = 4, m = 2.

Proof. Without loss of generality, we may assume n ≥ m.

It suffices to show that A(X) ⊆ ⟨π, ρ⟩, since π and ρ have the same parity as m+ n.

The group ⟨π, ρ⟩ is doubly transitive on X: it is clearly transitive on X, and it is then

not hard, but somewhat tedious, to see that it is doubly transitive and hence primitive.

For example, suppose we seek a σ that fixes ai and such that σ(bk) = aj , i ̸= j. First, note

that πn−i+1(ai) = z and πn−i+1(bk) = x, where x ∈ {a1, . . . , an, b1, . . . , bm}. Then there

is a p such that ρp(x) = πn−i+1(aj) ∈ {a1, . . . , an, b1, . . . , bm}. Now πi−n−1 ◦ ρp ◦ πn−i+1

fixes ai and maps bk to aj .

If n = m = 0, ⟨π, ρ⟩ = {ϵ} = A({y, z}). Otherwise, by lemma 2.3.8, it suffices to show

that ⟨π, ρ⟩ contains a 3-cycle.
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Suppose first that n ≥ m ≥ 3. Then ⟨π, ρ⟩ contains the following permutations:

σ1 = ρπ−1 = (y, a1)(z, b1)

σ2 = πσ1π
−1 = (y, a2, b1, b2)

σ3 = πσ2π
−1 = (y, a3, b2, b3)

σ4 = ρ−mσ1ρ
m = (b1, b2)(z, ak+1), k = n−m ≤ n− 3

σ5 = σ2σ4

σ6 = πσ5π
−1

σ7 = ρ1−mσ1ρ
m−1

σ8 = σ7σ3 = (y, a3)(z, ak+2)

σ9 = σ8σ6 = (z, ak+2, b1).

Next, suppose n > m ≥ 0, n ̸= 2m, m < 3. If m = 0, ρπ−1 = (a1, z, y). If m > 0,

τ1 = ρπ−1 = (y, a1)(z, b1)

τ2 = ρmτ1ρ
−m = (am, am+1)(zy)

τ3 = π2mτ1π
−2m = (y, c)(am, am+1),

where c = π2m(a1) /∈ {y, z, am, am+1}. Then τ3τ2 = (y, z, c).

The only remaining case is n = m = 1, in which case π and ρ are 3-cycles.

In fact, in the three excluded cases of the lemma, the lemma is false, but we will not

prove this. Wilson ([2]) does compute ⟨π, ρ⟩.

LEMMA 2.3.10 The Handle Theorem Suppose G is 2-connected and K is a 2-

connected proper subgraph of G. Then there are subgraphs H and A (the handle) of G

such that H is 2-connected, H contains K, A is a simple path, H and A share exactly the

endpoints of A, and G is the union of H and A.

Proof. Given G and K, let H be a maximal proper subgraph of G containing K. If

V (H) = V (G), let e be an edge not in H. Since H plus the edge e is 2-connected, it must

be G, by the maximality of H. Hence A is the path consisting of e and its endpoints.

Suppose that v is in V (G) but not V (H). Let u be a vertex of H. Since G is 2-

connected, there is a cycle C containing v and u. Following this cycle from v to u, Let w

be the first vertex in H. Continuing on the cycle from u to v, let x be the last vertex in

H. If x ̸= w, let A be the path (x, v1, v2, . . . , vk, v = vk+1, vk+2, . . . , vm, w), that is, the

portion of the cycle between x and w containing no vertices of H except x and w. Since

H together with A is 2-connected, it is G, as desired.

If x = w then x = w = u. Let y be a vertex of H other than u. Since G is 2-connected,

there is a path P from v to y that does not include u. Let vj be the last vertex on P that is
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in {v1, . . . , v, . . . , vm}; without loss of generality, suppose j ≥ k+1. Let z be the first vertex

on P after vj that is in H. Then let A be the path (u, v1, . . . , v = vk+1, . . . , vj , . . . , z),

where from vj to z we follow path P . Now H ∪A is a 2-connected subgraph of G, but it is

not G, as it does not contain the edge {u, vm}, contradicting the maximality of H. Thus

x ̸= w.

DEFINITION 2.3.11 If G is a graph, β(G) = |E(G)| − |V (G)|+ 1 is the cyclomatic

number or Betti number of G.

When we prove the main lemma, 2.2.6, the induction will be on β(G). It is easy to

see that if G = H ∪A as in lemma 2.3.10, β(H) = β(G)− 1.

If G is 2-connected and β(G) = 1, G is a cycle. When β(G) = 2, G is a θ-graph, and

this will be the base case for the induction. Because θ0 is excluded in our result, the case

β(G) = 3 will require that we can remove a handle from G to get a θ-graph that is not

θ0. This is always possible, and not hard to prove, but somewhat tedious. We need to see

that after adding a handle to θ0, we can remove a handle to leave a θ-graph that is not θ0.

LEMMA 2.3.12 If β(G) = 3, it is possible to remove a handle leaving a θ-graph other

than θ0.

Proof. There are eight distinct ways to add a handle to θ0:
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In the first case, we may remove the handle with interior node v to form a θ-graph of

type (x, 0, 4). The rest are similar.
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Exercises 2.3.

1. Let Σ be the set of 3-cycles in G. Show that ⟨Σ⟩ is the set of all products of 3-cycles.

2. If τ :X → Y is a bijection, and a, b, c ∈ X, verify that τ(a, b, c)τ−1 = (τ(a), τ(b), τ(c)).

3. State and prove a theorem analogous to the previous exercise, with (a, b, c) replaced by any
cycle (a1, a2, . . . , ai).

4. Show that a doubly transitive group is primitive.

5. Show that if |X| ̸= 2, then the requirement that G be transitive is not necessary in the
definition of doubly transitive. That is, if G is a permutation group such that for every
x, y, z ∈ X, with x /∈ {y, z}, there is a σ ∈ G such that σ(x) = x and σ(y) = z, then G is
transitive.

6. Prove that if |X| ≥ 4 then A(X) is doubly transitive on X.

7. A permutation group G on X is 2-transitive if for all w ̸= x and y ̸= z there is σ ∈ G such
that σ(w) = y and σ(x) = z. Show that G is 2-transitive if and only if G is doubly transitive.

8. Finish the proof of lemma 2.3.12.

2.4 Proof of the Main Lemma

We are now prepared to prove the main lemma, 2.2.6. As we remarked on page 13, it

suffices to show that A(V (G)\{v}) ⊆ Γ(v) for a single vertex v in G. The proof is by

induction on β(G), with base case β(G) = 2, that is, when G is a θ-graph other than θ0.

Let G be a simple θ-graph with vertices of degree three y and z. Denote the three

paths between y and z by p1, p2, and p3, with

p1 = (z, an, an−1, . . . , a1, y)

p2 = (y, bm, bm−1 . . . , b1, z)

q = (v, c1, c2, . . . , cs, y)

r = (v, d1, d2, . . . , dt, z)

p3 = qr,

where v is an internal vertex of p3.

..• .y .

•
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a1

.

•

.

a2

.

•

.

an

. •. z.

•

.

b1
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•

.

b2

.

•

.

bm

.•.
v
.• .

cs
.• .

c1
. •.

dt
. •.
d1
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Now let
π = σqp2p1q = (a1, . . . , an, z, b1, . . . , bm)

ρ = σrp1p2r = (b1, . . . , bm, y, a1, . . . , an).

These are in Γ(v).

Assume first that n ≥ 1 and that {m,n} is not {1, 2}, {2, 2}, or {2, 4}, so G is not of

type (4, 2, 2), (2, 2, 2), or (2, 2, 1). By lemma 2.3.9, A({a1, . . . , an, b1, . . . , bm, y, z}) ⊆ ⟨π, ρ⟩.
This implies that every 3-cycle with support in {a1, . . . , an, b1, . . . , bm, y, z} is in Γ(v). Let

τ = σqp2r = (d1, . . . , dt, z, b1, . . . , bm, y, cs . . . c1) ∈ Γ(v).

We can produce a 3-cycle in Γ(v) containing a1 and any vertex in {c1, . . . , cs, d1, . . . , dt}
in the form τp(a1, y, z)τ

−p. Thus, the 3-cycles in Γ(v) generate a subgroup transitive on

V (G)\{v}, and so by lemma 2.3.5, A(V (G)\{v}) ⊆ Γ(v).

Now suppose that G is of type (4, 2, 2). Let n = 4, m = 2, s = 1, and t = 0. Then

τ2ρπ−1τ−2π−1ρ = (z, a4, a1). We can then produce a 3-cycle mapping z to any vertex

in V (G)\{v} in the form ρp(z, a4, a1)ρ
−p or τ4(z, a4, a1)τ

−4(z, a4, a1)
2 = (z, c1, a4). Once

again the result follows from lemma 2.3.5.

If G is of type (2, 2, 2), let m = n = 2, s = 1, and t = 0. Then ρτ−1ρπ−1τπ2ρπ2ρ−1 =

(z, a1, c1). We can then produce a 3-cycle mapping z to any vertex in V (G)\{v} in the

form ρp(z, a1, c1)ρ
−p

Now let G be a simple 2-connected graph with β(G) ≥ 3. Write G = H ∪ A as in

lemma 2.3.10; by lemma 2.3.12, we may do this so that H is not θ0 when β(G) = 3. Let v

and w be the endpoints of the handle A. Since ΓG(v) ⊇ ΓH(v), ΓG(v) contains a 3-cycle,

and so by lemma 2.3.8 it suffices to show that ΓG(v) is doubly transitive on V (G)\{v}.
Let A be the path p = (v, at, at−1, . . . , a1, w). Let u be a vertex of H other than v and

w. Since H is 2-connected, there is a simple path q = (w, bs, . . . , b1, v) in H that does not

include u. Then let

σ = σpq = (w, a1, . . . , at, b1, . . . , bs),

so σi(w) = ai and σ(u) = u. By the induction hypothesis, A(V (H)\{v} ⊆ ΓH(v), so for

all vertices x of H, other than u and v, ΓH(v) contains a permutation mapping w to x

and fixing u (see exercise 6 in section 2.3). Thus, for all vertices u in H, other than v and

w, and for all vertices y and z in G, other than v and u, there is a permutation in ΓG(v)

mapping y to z and fixing u.

Finally, we need to show that for all u in {w, a1, . . . , at} and vertices y and z in

V (G)\{v, u}, there is a permutation in ΓG(v) mapping y to z and fixing u.

Let x ∈ V (H)\{v, w}; there is a permutation τ ∈ ΓG(v) such that τ(u) = x. Then as

we have already seen, there is a permutation µ mapping τ(y) to τ(z) and fixing x. Thus

τ−1µτ maps y to z and fixes u.
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Exercises 2.4.

1. In the case that G is of type (2, 2, 2), Verify that ρτ−1ρπ−1τπ2ρπ2ρ−1 = (z, a1, c1).

2.5 The 15-puzzle redux

Let’s return to the 15-puzzle. In graph form, this is a bipartite graph, so we know that

puz(G) has two components. We are interested in the component that contains the “stan-

dard” labeling shown in figure 2.1.1; call this labeling f . Suppose that g is a labeling with

the same blank vertex. By theorem 2.2.7, g is in the same component as f if and only if

g−1f has the same parity as 0, that is, that g−1f is an even permutation of the vertices.

In general, g is in the same component as f if and only if g−1f has the same parity as the

distance that the blank in g is from its original location.

It is a little more natural to think of permuting the labels, rather than the vertices.

The corresponding permutation of the labels is fg−1, which has the same parity as g−1f .

Thus it is easy to determine which configurations can be reached in the puzzle.

Exercises 2.5.

1. Show that fg−1 has the same parity as g−1f .

2. Which of the following configurations can be produced from the standard starting position?
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