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The so-called 15-puzzle may be generalized to a puzzle based on an arbitrary 
graph. We consider labelings or colorings of the vertices and the operation of 
switching one distinguished label with a label on an adjacent vertex. Starting 
from a given labeling, iterations of this operation allow one to obtain all, or 
exactly half, of the labelings on a non-separable graph (with the polygons and 
one other graph as exceptions). 

1. THE PUZZLE 

The well known “15-puzzle” consists of fifteen small movable square 
tiles numbered 1, 2,..., 15 and one empty square, arranged in a 4 x 4 array. 
One is permitted to interchange the empty square with a tile next to it as 
often as desired. The challenge is to move by a sequence of SUCH inter- 
changes from one given position of the tiles to another specified position. 
This may or may not be possible. It was observed as early as 1879 [3] that 
the existence of a solution to the problem depends on the parity of the 
permutation of the squares required to map the first position onto the 
second. 

A discussion of the 15-puzzle containing this observation may also be 
found in Chapter 1 of [2]. This exposition motivated the author to con- 
sider the analogous puzzle based on an arbitrary simple graph (i.e., a graph 
without loops or “multiple” edges). However, the problem has been 
raised independently by R. Stanley. D. Greenwell and L. Lovasz also came 
upon this problem independently and have obtained proofs of Theorems 1 
and 2 below for non-bipartite graphs with at least nine vertices. 

Let G be a finite simple graph with vertex set V(G) of cardinality n + 1. 
By a labeling we mean the placement of labels 1, 2,..., n on distinct vertices 
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of G, leaving one vertex “blank” or “unoccupied.” Formally, a labeling 
on G is to be bijective mapping f : I’(G) -+ { 1. 2,..., n, o 3. The vertex x 
with xf = o is said to be unoccupied inf. 

(All mappings will be written on the right and composition of mappings 
is to be read from left to right.) 

Two labelingsf, g on G are said to be adjacent if and only if g can be 
obtained from f by “sliding” a label along an edge of G onto the vertex 
which is unoccupied in J Formally, labelings f, g on G are adjacent if and 
only if g = (xy) .f, where (xv) denotes the transposition (permutation 
of V(G)) which interchanges x and y, x is the vertex with xjf = @, and y 
is any vertex of G adjacent to x in G. Thus yg = o and xg = vf: (This 
operation of switching @ with the label on an adjacent vertex arises in the 
recoloring procedure in the standard proof of Brook’s Theorem.) 

The relation of adjacency defined on the labelings is symmetric and 
irreflexive, and so defines a new simple graph puz (G) with vertex set 
V(puz(G)) consisting of all labelings on G, two labelings being joined by an 
edge in puz(G) if and only if they are adjacent. The “puzzle” referred to in 
the title consists of determining whether two given labelings f, g are in the 
same connected component of puz(G), and when possible, explicitly con- 
structing a path fromfto g in puz(G). 

The classic ISpuzzle is of this type. Here the graph G is: 

In this case, puz(G) has exactly two components, each containing &(16!) 
labelings. 

An interesting graph turns out to be the graph 19~ defined by the diagram: 

THEOREM 1. Let G be a finite simple non-separable graph other than a 
polygon or the graph 0, above. Then puz(G) is connected unless G is bipartite, 
in which case puz(G) has exactly two components. In this latter case, 
labelings L g on G having unoccupied vertices at even (respectively, odd) 
distance in G are in the same component of puz(G) if and only ifsg-” is an 

&b/16/I-7 
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even (respectively, odd) permutation of V(G). puz(%,) has exact!). six 
components. 

2. PATHS AND PERMUTATIONS 

A path p in a graph G is, for our purposes, a sequence 

P = (X” 2 Xl Y-.*9 4 

of vertices of G such that xiel and xi are adjacent in G, i = 1,2,,.., n. Such 
a path p is said to be from x, (its initial vertex) to x, (its terminal vertex). 
The path p is simple when x,, , x1 ,..., x, are distinct, with the possible 
exception that x,, = x, , in which case p is a simple closed path. The path 
j = (x, )...) x1 , x0) is the reverse ofp. 

For each pathp = (x, , x1 ,..., x,) in G, define a permutation u9 of V(G) 
as the product of transpositions 

The following proposition is immediate from the definitions. 

PROPOSITION 1. Labelings f, g on a graph G are in the same component 
ofpuz(G) if and only iff = u,gfor some path p in G from f-l( m) to g-‘( e, ). 

The path p mentioned in Proposition 1 is the path followed by the 
unoccupied vertex in deriving g from f 

Define r(x, y) = F&K, y) to be the set of all permutations CY~ of V(G) 
where p is a path from x to y in G. We abbreviate r(x, x) = I’&, x) by 
r(x) = r,(x). 

If p is a path from x to y and 4 a path from y to z, then the product pq, 
a path from x to z, is defined as usual. Note that CJ~(T~ = cr9* , and 
UP ’ = ufi . These observations lead to 

PROPOSITION 2. For each vertex x of G, I’(x) is a group of permutations 
of V(G), each fixing x. Zf p is a path from x to y in G, then r(x, y) = 
T(x) u9 = uJ( y) and r(y) = u;lT(x) u9 . 

Remarks. It is perhaps relevant to observe that, if p and q are homo- 
topic paths, then u2, = u, . (Paths p, q in a simple graph are homotopic 
when one can be derived from the other by a sequence of replacements of 
vertex terms y by paths (y, z, y), and the inverse of this operation.) Thus 
p t-+ up induces a homomorphism of the fundamental group of G based at 
x onto r(x). The fundamental group of a polygon with n vertices is 
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generated by a simple closed path p = (x0 , x1 ,..., x,-~ , x0) and here 
ug = (X,-l *** x2x1), an (n - I)-cycle. Hence Qx,,) is cyclic of order n - 1 
in this case. The reader may verify that F(x) is transitive on V(G) - {xl 
if and only if G is non-separable. 

THEOREM 2. Let G be a finite simple non-separable graph other than a 
polygon or the graph BO . Then, for any vertex x of G, 

W = wm(VG) - ix)), 

unless G is bipartite, in which case 

r(x) = alt(V(G) - {x}). 

If G = 6,, , then, for each vertex x, r(x) is the group PGL,(S) of order 120 
in its sharply 3-transitive representation of degree 6. 

Here, for any set X, sym(X) denotes the symmetric group of all permuta- 
tions of X and alt(X) denotes the alternating group of all even permutations 
of x. 

In the statement of Theorem 2, we make the minor logical error of not 
distinguishing between permutations of V(G) - {x} and permutations of 
V(G) which fix x. This convention is continued throughout this paper. 

Theorem 1 follows quickly from Theorem 2 and Propositions 1 and 2: 

Proof of Theorem 1. Let G be a connected graph and fix x E V(G). Each 
component of puz(G) contains a labeling f with xf = o. Labelings f, g 
with xf = xg = o are in the same component of puz(G) if and only if 
fg-l E I’(x). Thus th e components of puz(G) are in one-to-one correspon- 
dence with the right cosets of F(x) in sym( V(G) - {xl), and their number 
is the index of F(x) in sym(V(G) - {x}). 

Suppose now that r(x) = alt(V(G) - (x}) for all vertices x of a con- 
nected graph G. Let f, g be labelings on G with xf = yg = ~1 and choose a 
path p from x to y. Then f and g are in the same component of puz(G) if 
and only if fg-l E I’(x, y) = r(x) up if and only if fg-’ and uD have the 
same parity if and only if fg-l and the length of p have the same parity. 

Our proof of Theorem 2 proceeds by induction on the cyclomatic 
number (or Betti number) /3(G) = I E(G)/ - I V(G)/ + 1 of the non- 
separable graph G. Non-separable graphs with p(G) = 1 are the polygons; 
non-separable graphs with j3(G) = 2 are the ‘%graphs,” of which 0, is a 
representative. The proof is given in Section 4 following a section con- 
taining lemmas required to start the induction with the o-graphs, and to 
complete the proof. 
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We remark at this point that. for the proof of Theorem 2, it will suffice 
to verify the assertion for a single vertex x, since Proposition 2 shows that, 
for a connected graph G, the groups r(x), x E V(G), are equivalent 
permutation groups. Also, it will be enough to show that 

alt( C’(G) - {xi) C r(x) 

for graphs G satisfying the hypothesis. For, if G is connected, there will be 
closed paths p based at x of odd length (or equivalently, odd permutations 
(TV in r(x)) if and only if G is not bipartite. 

3. GENERATING THE ALTERNATING GROUP 

LEMMA 1. Let X be a finite set, 1 X I 3 3, andjix u, v E X. Then the 
3-cycles (uvx), x E: X - {u, v}, generate alt (X). 

Proof. A proof may be found in Chapter 1 of [l], but it is short enough 
to sketch here. Each u E alt(x) can be written as a product of an even 
number of transpositions. Since (xy) = (vx)(vy)(vx), we can write 
(z = (uxl)(vxz) s-0 (OX,) where m is even. Then 

If x2i # U, replace (ux~~-~x& by the product (uux~~-~)-~ (u~~~~)(uu~~~...J in 
this latter expression for 0. 

For u E sym(X), define the support /j u // of u to be the set of all elements 
x E X which are not fixed by u. Thus /j u 11 contains two elements when u is 
a 2-cycle (transposition) and II u 11 contains three elements when (and only 
when) u is a 3-cycle. 

LEMMA 2. Let Z be a set of 3-cycles on ajinite set X, I X I 3 3, and let 
<.Z) denote the subgroup of sym(X) generated by 2:. Then the following are 
equivalent : 

(i) (Z) = alt(X). 
(ii) (2) is transitive on X. 

Proof. For a subgroup r C sym(X) and a subset Y C X, we define 
r 1 Y = {V E r : II u 11 LZ Y}, considered as a subgroup of sym(Y). 

It is clear that (i) implies (ii). Assume Z is given satisfying (ii). Then let Y 
be a subset of X such that I Y I > 3, (Z)/ Y = alt(Y), and which is 
maximal with respect to these properties. We claim Y = X (which will 
prove the lemma). 
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If Y # X, our assumption (ii) implies that either: (a) there exists a 
3-cycle (uuz) E 2 with U, 2r E Y, z 6 Y; or, (b) there exists a 3-cycle (WZ) E Z 
with z E Y, U, v q! Y. In case (a), (2) contains (UUX), x E Y - {u, u}, in 
addition to (wz), so (Z)I(Y u {z}) = alt( Y u {z}) by L.emma 1. This 
contradicts the maximality of Y. In case (b), for each x E Y, (C)i Y 
contains a permutation CJ such that zu = X. Then I+(WZ) CJ u= (UZX) E (2). 
This holds for every x E Y and hence (Z)j( Y u {u, u}) = alt(Y u {u, P}) by 
Lemma 1. Again, the maximality of Y is contradicted. 

LEMMA 3. Let F be a transitive permutation group on X and suppose 
that I’ contains a 3-cycle. if r is primitive (in particular, if I’ is doubly 
transitive), then alt(X) C r. 

Proof. Let 2 be the set of 3-cycles in r. Then the orbits of(Z) on X are 
clearly sets of imprimitivity for r. Hence, if r is primitive, then (Z) is 
transitive and Lemma 2 completes the proof. 

LEMMA 4. Let X = {y,a,,a, ,..., a,,z, b,,b, ,..., b,,,i be a set of 
n + m -+ 2 letters (n > m 3 0) and let 

rr = (ala3 a.* anzblbf 1.. b,), 

Then (‘lr, p) = sym(X) if n + m is odd, and (TT, p> = alt(X) if n + m is 
even, unless 

(i) n = 2, m = 1, 
(ii) n = m = 2, or 

(iii) n = 4, m = 2. 

(In case (i), (n, p) is of order 20; in case (ii), (7r, p) is of order 60; in case 
(iii), (‘rr, p} is of order 1344.) 

Proof. To prove our assertion (assuming (i), (ii), (iii) do not hold), it 
will suffice to show that alt(X) C (r, p), since rr and p have the same parity 
as m + n. 

The group (7~, p) is doubly transitive on X since it is obviously transitive 
and the stabilizer of, say, z in (rr, p) contains p and so is transitive on 
X - {z}. Thus, in view of Lemma 3, it will be enough to show that (rr, p> 
contains a 3-cycle (except in cases (i), (ii), and (iii)). 

First assume n > m 3 3. Define permutations cl, ue ,..., a, E (n, p) as 
follows: 
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(T1 = 7+p = (yu,)(zb,), 
02 = 7+a,n = (yu2)(blb2), 
03 = Tf-lag = (ya,)(b,b,). 
04 = pm%p-m = @lb2)mX+l)r where k=n-m<n-3, 

05 = ~4~2 = (Y~d(%,l>, 
06 = +w = (Y~3)(b,%+,), 
a, = pm-lqp- (m-1) = @&3)(Z~*+A 

08 = CT307 = (rQa>(z%+z)> 

(T~ = (s6ug = (zuk+,b,), a 3-cycle. 

Now assume n > m 3 0, n Z 2m. If m = 0, w-lp = (ulzy), a 3-cycle. 
If m > 0, consider 

71 = +p = (Y%)W,), 

72 = P++lPrn = G&dJm+,)(zY>, 

73 = T+YgP = (yc)(u&,+J, 

where c = u17rzm $ ( y, z, a, , a,,,). Then T3T3 = (yzc) is a 3-cycle in 
<‘rr, P>. 

The two cases considered above show that alt(X) C (z-, p} unless: 
m=n=O;m=n=1;n=2,m=1;n=m=2;orn=4,m=2. 
But trivially, alt(X) C (7~, p) when m = n = 0 and m = n = 1. For 
completeness, we show that in the remaining cases alt(X) $ (r, p). 

Case (i): iz = 2, m = 1. Without loss of generality, we may assume 
X = GF(5) (the field with five elements) and let y = 0, a, = 4, u2 = 2, 
z = 1, b, = 3. Consider 

a permutation group of order 20. With this identification, the permutation 
x + 3x of I’, coincides with r, and x ++ 2x + 4 coincides with p. Hence 
(x, p) _C I’, , and it is easy to see that (r, p) = I’, . 

Cu.re (ii): n = m = 2. We may take X = GF(5) u {co} and let 
y= cc,u,=O,u,= 1,z=2,bI=3,b,=4.Consider 

P=,(5) = lx t-t s : a, b, c, d E GF(5), ud - bc = f 11, 

a permutation group on X of order 60. Here the permutation x I--+ x + 1 
coincides with r, and x ++ l/(x + 1) coincides with p. 
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Thus 

(‘/T, P> c p=,(5), 

and it is not difficult to see that in fact equality holds. 

Case (iii): n = 4, m = 2. We take X to be the vector space of ordered 
triples of elements of GF(2) and let y = 000, a, = 001, a, = 010, a3 = 100, 
a4 = 011, z = 110, bI = 111, b, = 101. Consider the group r, of all 
affine transformations x H xM + c where c E X and M is a non-singular 
3 x 3 matrix over GF(2), a permutation group of order 1344. Here the 
permutations 

011 
xwx 100 0 and 

010 

coincide, respectively, with rr and p. Hence (7r, p) C r, , and it can be 
shown that equality holds. 

4. PROOF OF THEOREM 2 

The following lemma was introduced by H. Whitney [5:], and a proof 
can also be found in [4, p. 851. (G. N. Robertson has suggested that the 
statement be called the “Handle Theorem.“) Here an arc is a finite tree 
with exactly two monovalent vertices (its ends). 

LEMMA 5. Let G be a non-separable graph and K a non-separable 
proper subgruph of G with non-empty edge set. Then we can write 
G = H u A, where His a non-separable subgraph of G containing K, A is an 
arc-&graph of G, and H n A consists only of the ends qf A. (Clearly, 
IS(G) = P(H) + 1.) 

The polygons are subdivisions of the (non-simple) graph consisting 
of a single loop and its incident vertex. Adding a “handle” to a polygon, 
we obtain the e-graphs (non-separable graphs with ,6(G) = 2), which are 
subdivisions of the (non-simple) graph: 

Adding a handle to a d-graph, we see that every non-separable graph G 
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with /3(G) = 3 is a subdivision of one of the four graphs: 

The trivalent vertices of a O-graph are its nodes. By the B-graph of type 
(j, k, Z), j > k 3 1 3 0, we mean the &graph in which the three arc- 
subgraphs joining its nodes have, respectively, j, k, and 1 internal vertices. 
Such a O-graph is simple if and only if k > 1. 

We remark at this point that every simple non-separable graph G with 
/3(G) = 3 contains a &graph whose type is vlot (2,2, 1). This can be seen 
by considering the possible ways to add a handle to a O-graph of type 
(2,2, 1). We omit the details. 

As we have observed in Section 2, it will suffice to show that 

alt(V(G) - {x}) C P(X) 

for some particular vertex x of a finite simple non-separable graph G, not 
a polygon or fIo . 

We first prove Theorem 2 for o-graphs. Let G be a finite simple e-graph, 
let y and z be the nodes of G, and Al , A, , A, the three arcs of G joining y 
and z. Suppose A, has an internal vertex x, and let 

~2 = (Y, b, ,..., b,,b, , z>, 

4 = (x, Cl, G2 3.*., Csr Y), 

y = (x, 4,4 ,..., 4 , 4, 

be simple paths contained in A, , A, , A, , A, , respectively. Then 

= = %98911 = (al *** a,zb, **- b,), 
and 

P" ~~~~~~~ = (4 *a- b,.wl -.* 4 

belong to I’(x). 
Assume for the moment that the arcs AI , A,, A, have been indexed so 

that A, has an internal vertex, n >, 1, but m and n are not 4,2 or 2,2 or 
2, 1 in some order. This can be done unless G has type (4, 2, 2), (2, 2, 2), 
or (2,2, 1) (these cases will be discussed separately). Then, by Lemma 4, 
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any three vertices of A, u A, are the support of a 3-cycle of r(x). By con- 
jugating (a, yz) E r(x) by an appropriate power of 

7 = ar,,i = (4 ... dtzb, ... b,yc, ... c,), 

we can find a 3-cycle in r(x) containing a, and any given vertex of A,, 
other than x. It is clear, then, that the 3-cycles in r(x) generate a group 
which is transitive on V(G) - {x}. Hence, by Lemma 2, r(x) contains 
alt( V(G) - (xl). 

Suppose G is the &graph of type (2,2,2) and take m = n = 2, s = 1, 
t = 0 in the definition of pl, pz , q, r above. Then rr2prr2rn-1p~-1 = 
(zycl) E r(x). Conjugating (zycJ by appropriate powers of rr, and using 
Lemma 2, we see that alt(V(G) - {xl) _C r(x). 

Suppose G is the e-graph of type (4,2,2), and take n = 4, m = 2, 
s = 1, t = 0 in the definition of p1 , p2 , q, r. Then p~-~~-~n-~p~~ = 
(zu& E r(x). By conjugating (zu& by appropriate powers of p and r, 
alt( l’(G) - (x}) C r(x) follows from Lemma 2. 

Suppose G is 0,) the e-graph of type (2,2, I), and identify the vertices 
of G with {x, co} u GF(5) as indicated below: 

Here we claim that r(x) coincides with 

PGL,(S) = /z+-+$$ : a, b, c, d E GF(5), ad - bc # 0 

a 3-transitive permutation group of order 120 acting on GF( 5) u { co}. Let 
p = (x, co, 4, 3,2, 1, 0, 03, x), q = (x, 2, 1, 0, 00, x). Then p and q 
generate the fundamental group of G, so that 02, = (01234) and 
U‘Q = (00012) generate r(x). But the permutations z + z + 1 and 
z H 3/(z + 3) of PGL,(S) coincide, respectively, with uD a:nd (zq . Hence 
r(x) C PGL,(S) and it can be checked that equality holds. 

We now proceed by induction on /3(G). Let G be a finite simple non- 
separable graph with /3(G) > 3. Write G = H u A where H is a non- 
separable subgraph of G with /3(H) = /3(G) - 1 and A is an arc with only 
its ends in H. By a previous remark, H may be chosen not to be 6$, (when 
/3(G) = 3). With this understanding, alt(V(V(H) - {x)) C r,(x) for each 
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x E V(H) by our discussion of O-graphs above or by the induction hypo- 
thesis. 

Let x and y be the ends of A. Since F,(X) contains I’,(x) which contains 
3-cycles, it will suffice by Lemma 3 to show that r,(x) is doubly transitive 
on V(G) - (x}. 

Let p = (x, a,, a,-, ,..., a2 , a, , y) be the unique simple path from x to 
y in A. Let z be any vertex of H other than x, y. By the non-separability 
of H, there exists a simple path q = (y, b, ,..., b, , b, , x) from y to x in H 
which does not pass through z. Then cpq = (ya,a, ..* atbIb, -a- b,) E r,(x) 
and the i-th power of uDQ takes y to ai (1 < i < t). Now rH(x) contains 
permutations fixing z and taking y to any vertex of H other than x and z. 
Hence the stabilizer of z in I’,(X) is transitive on V(G) - {x, z}. Since 
I’,(x) is also transitive on V(G) - {x}(F&x) contains a permutation 
taking y to z), we conclude that r,(x) is doubly transitive on V(G) - I(x). 
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