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1
Galois Theory

1.1 The Galois Group

We assume throughout that all fields have characteristic 0, unless otherwise indicated.

References to Gallian are to the seventh edition.

DEFINITION 1.1.1 If E ⊇ F are fields, The Galois group G(E/F ) is the group of

automorphisms of E that fix every element of F .

DEFINITION 1.1.2 If H ≤ G(E/F ), then EH is the fixed field of H, namely, the set

of elements of E that are fixed by every automorphism in H.

THEOREM 1.1.3 Suppose that σ1, . . . , σn are distinct automorphisms of E. If a1, a2,

. . . , an are elements of E and for all u ∈ E

a1σ1(u) + · · ·+ anσn(u) = 0,

then ai = 0 for all i. In other words, no nontrivial linear combination of the functions σi

is the identically zero function.

Proof. The contrapostive of the theorem is: Given that σ1, . . . , σn are distinct automor-

phisms of E: If a1, a2, . . . , an are not all zero then there is a u ∈ E such that

a1σ1(u) + · · ·+ anσn(u) ̸= 0.

To prove this it suffices to show that for all m, with σ1, . . . , σm distinct automorphisms, if

a1, . . . , am are all nonzero, then there is a u ∈ E such that

a1σ1(u) + · · ·+ amσm(u) ̸= 0.
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6 Chapter 1 Galois Theory

This is because given a1, a2, . . . , an not all zero, we may pick out the m of them that are

non-zero, and apply the second result.

So we prove the following statement by induction on m: If σ1, . . . , σm are any distinct

automorphisms of E, and a1, . . . , am are all nonzero then for some u, a1σ1(u) + · · · +
amσm(u) ̸= 0. Call this statement “S(m).”

Base: If m = 1, pick u so that σ1(u) ̸= 0 (u = 1, for example). Then a1σ1(u) ̸= 0

because E has no zero divisors.

Induction: We want to prove that if S(i) is true for i ≤ m, then S(m+ 1) is true. We

prove the contrapositive, namely, that if S(m+1) is false, then S(i) is false for some i ≤ m.

So suppose that a1, . . . , am+1 are nonzero and for all u, a1σ1(u)+ · · ·+ am+1σm+1(u) = 0.

Pick a ∈ E such that σ1(a) ̸= σm+1(a). Now substituting au for u and then using the

multiplication-preserving property of isomorphisms we get:

0 = a1σ1(au) + · · ·+ amσm(au) + am+1σm+1(au)

0 = a1σ1(a)σ1(u) + · · ·+ amσm(a)σm(u) + am+1σm+1(a)σm+1(u). (1.1.1)

Also,

0 = σm+1(a)
(
a1σ1(u) + · · ·+ amσm(u) + am+1σm+1(u)

)
0 = a1σm+1(a)σ1(u) + · · ·+ amσm+1(a)σm(u) + am+1σm+1(a)σm+1(u). (1.1.2)

Subtracting equation 1.1.2 from equation 1.1.1, we get

0 = a1(σ1(a)− σm+1(a))σ1(u) + · · ·+ am(σm(a)− σm+1(a))σm(u).

Not all of the coefficients of the σi are zero in the last equation, because a1(σ1(a) −
σm+1(a)) ̸= 0. Choosing just those terms in which aj(σj(a) − σm+1(a)) ̸= 0, we have

shown that for some i ≤ m, S(i) is false, as desired.

THEOREM 1.1.4 If [E :F ] < ∞, then G(E/F ) is finite and in fact |G(E/F )| ≤ [E :F ].

Proof. Let u1, . . . , un be a basis for E over F . Suppose, for a contradiction, thatG(E/F )

contains n+1 distinct automorphisms, σ1, . . . , σn+1. Consider the system of n simultaneous

equations in n+ 1 unknowns:

n+1∑
i=1

σi(uj)xi = 0, j = 1 . . . n. (1.1.3)

By linear algebra, this system has a nontrivial solution a1, . . . , an+1. Now for any u ∈ E,

u =
∑n

i=1 ciui, because the ui form a basis. Then

n+1∑
i=1

aiσi(u) =

n+1∑
i=1

ai

n∑
j=1

cjσi(uj) =

n∑
j=1

cj

n+1∑
i=1

aiσi(uj) =

n∑
j=1

cj · 0 = 0,
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because a1, . . . , an+1 is a solution to the system of equations in 1.1.3. This contradicts

theorem 1.1.3.

1.2 Symmetric functions

DEFINITION 1.2.1 The elementary symmetric functions in {x1, . . . , xn} are

aj =
∑

X∈([n]
j )

∏
i∈X

xi,

where
(
[n]
j

)
is the collection of all subsets of {1, 2, . . . , n} of size j. In other words, aj is

the sum of all possible terms formed by multiplying j of the xi together.

Remark. The elementary symmetric functions arise quite naturally:

n∏
i=1

(t− xi) = tn − a1t
n−1 + a2t

n−2 − · · ·+ (−1)nan

is a polynomial with roots xi.

LEMMA 1.2.2 If E is the splitting field for f(x) over F , then [E :F ] ≤ n!, where n is

the degree of f .

Proof. By induction on n. Let b be a root of f in E. Since b is the root of a polynomial

of degree n, [F (b) :F ] ≤ n. Also, (x − b) must divide f(x) over F (b), so let g(x) =

f(x)/(x − b). E is the splitting field for g(x) over F (b), so by the induction hypothesis,

[E :F (b)] ≤ (n− 1)!. Now

[E :F ] = [E :F (b)][F (b) :F ] ≤ n(n− 1)! = n!.

THEOREM 1.2.3 If F is a field, F (x̄) is the field of rational functions in the vari-

ables x̄ = {x1, . . . , xn}. Let S ⊆ F (x̄) be the subfield fixed by the symmetric group Sn,

interpreted as acting on {x1, . . . , xn}. Then
a. [F (x̄) :S] = n!

b. G(F (x̄)/S) = Sn

c. S = F (ā)

d. F (x̄) is the splitting field of some polynomial over S
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Proof. The elementary symmetric functions ai are clearly in S, so F (a1, . . . , an) ⊆ S.

The polynomial p(t) =
∏n

i=1(t−xi) splits in F (x̄) and has coefficients in F (ā), and in fact

F (x̄) is the splitting field of p(t), since F (x̄) is the smallest field containing all of the roots

xi. By the lemma,

[F (x̄) :F (ā)] ≤ n!. (1.2.1)

Thus, [F (x̄) :S] is finite, and since Sn ≤ G(F (x̄)/S),

[F (x̄) :S] ≥ |G(F (x̄)/S)| ≥ |Sn| = n!. (1.2.2)

Combining equations 1.2.2 and 1.2.1,

n! ≥ [F (x̄) :F (ā)] = [F (x̄) :S][S :F (ā)] ≥ n![S :F (ā)] ≥ n!.

Thus [S :F (ā)] = 1 so S = F (ā), and [F (x̄) :S] = n!. Now using equation 1.2.2 again,

|G(F (x̄)/S)| = n!, and so G(F (x̄)/S) = Sn.

1.3 Normal extensions

DEFINITION 1.3.1 E is a normal extension of F if [E :F ] < ∞ and F = EG(E/F ).

THEOREM 1.3.2 If [E :F ] < ∞ and H ≤ G(E/F ), then

a. [E :EH ] = |H|
b. H = G(E/EH)

If E is a normal extension of F , [E :F ] = |G(E/F )|.

Proof. Since H fixes EH , H ≤ G(E/EH). By theorem 1.1.4, [E :EH ] ≥ |G(E/EH)| ≥
|H|. If we can show that |H| ≥ [E :EH ] then both (a) and (b) follow immediately.

Since [E :EH ] < ∞, E = EH(a) for some a, by the Primitive Element Theorem. Let

q(t) be the minimal polynomial of a over EH , with degree m = [E :EH ]. Recall that by

the Divisibility Property (Gallian theorem 20.3), q(t) divides any polynomial over EH that

has a as a root.

Let H = {ϵ = σ1, σ2, . . . , σh}, where ϵ is the identity automorphism. We want to prove

that h ≥ m. Consider the elementary symmetric functions using σi(a) in place of xi:

α1 =

h∑
i=1

σi(a) α2 =
∑
i<j

σi(a)σj(a) . . . αj =
∑

X∈([h]
j )

∏
i∈X

σi(a) . . . αh =

h∏
i=1

σi(a)

For convenience, let α0 = 1. Now we note that

σk(αj) =
∑

X∈([h]
j )

∏
i∈X

(σk ◦ σi)(a).
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Since H is a group, {σk ◦σi : i = 1, . . . , h} is simply a permutation of {σ1, σ2, . . . , σh}, and
since αj is symmetric in the σi, σk(αj) = αj . Hence, for all j, αj ∈ EH . Now let

p(t) =
h∏

i=1

(t− σi(a)) =
h∑

i=0

(−1)iαit
h−i.

Since σ1(a) = a, p(a) = 0, and since p(t) ∈ EH [t], q(t) divides p(t). Since the degree of q

is m and the degree of p is h, h ≥ m, as desired.

For the last statement of the theorem, let H = G(E/F ). Then by normality and parts

(a) and (b), [E :F ] = [E :EH ] = |H| = |G(E/F )|.

LEMMA 1.3.3 Suppose E is the splitting field for f over F , and p is an irreducible

polynomial in F [x] that divides f over F . Let the roots of p be a1, . . . , ar. Then for all i

there is a σ ∈ G(E/F ) such that σ(a1) = ai.

Proof. Since the ai are roots of f , all ai are in the splitting field E. By the lemma

on page 372 in Gallian, there is an isomorphism ϕ from F (a1) to F (ai) that takes a1 to

ai and fixes F . E is the splitting field for f over both F (a1) and F (ai), so by theorem

19.4 in Gallian, there is an automorphism σ on E that extends ϕ—this σ is the desired

automorphism, and the proof of the lemma is complete.

THEOREM 1.3.4 E is a normal extension of F if and only if E is the splitting field

of some polynomial over F .

Proof. Suppose E is a normal extension of F . As in the previous proof, let E = F (a),

G(E/F ) = {σ1, σ2, . . . , σn}, and

p(t) =
n∏

i=1

(t− σi(a)) =
n∑

i=0

(−1)iαit
n−i,

where as before the αi are the elementary symmetric functions in the σi. Since the αi are

fixed by G(E/F ), αi ∈ F for every i. Thus, p(t) ∈ F [t] and p splits in E. Since a is a root

of p, a must be in the splitting field of p, but since E = F (a), this means E is the splitting

field of p.

Now, suppose E is the splitting field for f over F ; we want to show that E is a normal

extension of F . The proof is by induction on [E :F ].

Base If [E :F ] = 1, then E = F , F is trivially the fixed field of G(F/F ) and so E is a

normal extension of F .

Induction step The inductive hypothesis is:
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If E1 is an extension of F1 with [E1 :F1] < [E :F ], and E1 is a splitting field over

F1, then E1 is a normal extension of F1.

Let [E :F ] = n > 1. The polynomial f has an irreducible factor p of degree r > 1. By the-

orem 19.6 in Gallian, p has distinct roots a1, . . . , ar. Since [E :F ] = [E :F (a1)][F (a1) :F ],

[E :F (a1)] = [E :F ]/[F (a1) :F ] = n/r < n. Since E is the splitting field of f over F (a1),

E is a normal extension of F (a1), by the inductive hypothesis.

We need to show that the fixed field of G(E/F ) is F , that is, that if a ∈ E is fixed

by G(E/F ), then a ∈ F . Since G(E/F (a1)) ≤ G(E/F ), a is fixed by G(E/F (a1)) and so

a ∈ F (a1) since E is a normal extension of F (a1). By theorem 19.3 in Gallian,

a = c0 + c1a1 + c2a
2
1 + · · ·+ cr−1a

r−1
1 ,

where the ci are in F . By lemma 1.3.3, for every i there is a σi ∈ G(E/F ) such that

σi(a1) = ai, so

σi(a) = a = c0 + c1ai + c2a
2
i + · · ·+ cr−1a

r−1
i .

Thus, every ai is a root of the polynomial

(c0 − a) + c1t+ c2t
2 + · · ·+ cr−1t

r−1

of degree r−1. Since the ai are distinct, this implies that the coefficients of this polynomial

are all 0, and in particular a = c0 ∈ F .

1.4 Fundamental Theorem of Galois Theory

If E ⊇ K ⊇ F and E is a normal extension of F , then E is a splitting field over F , so E

is a splitting field over K, and therefore E is a normal extension of K. It need not be the

case that K is a normal extension of F . The next lemma characterizes those K that are

normal extensions of F .

LEMMA 1.4.1 If E ⊇ K ⊇ F , and E is a normal extension of F , then K is a normal

extension of F if and only if for all σ ∈ G(E/F ), σ(K) ⊆ K.

Proof. Suppose that for all σ ∈ G(E/F ), σ(K) ⊆ K. Let K = F (a), then for all

σ ∈ G(E/F ), σ(a) ∈ K. Let p(x) =
∏

σ∈G(E/F )(x−σ(a)). As in the proof of theorem 1.3.4,

p(x) ∈ F [x] and K is the splitting field of p(x) over F . Hence K is a normal extension of

F .

For the converse, suppose K is a normal extension of F and K = F (a). Let p(x) =∏
σ∈G(K/F )(x − σ(a))—note the K! Then just as in the proof of theorem 1.3.4, K is the
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splitting field of p(x) over F , and p(a) = 0. Then for every σ ∈ G(E/F ) (note the E!),

0 = σ(p(a)) = p(σ(a)), so σ(a) is a root of p. Since all roots of p are in K, σ(a) ∈ K.

The element a has a minimal polynomial over F , with some degree n. By theorem 20.3

in Gallian, every element b ofK = F (a) can be written as b = c0+c1a+c2a
2+· · ·+cn−1a

n−1

for some ci ∈ F . Thus

σ(b) =

n−1∑
i=0

ci(σ(a))
i ∈ K,

so σ(K) ⊆ K.

THEOREM 1.4.2 Fundamental Theorem of Galois Theory Suppose E is a

splitting field over F and E ⊇ K ⊇ F . Recall the two functions:

f(H) = EH , if H ≤ G(E/F )

g(K) = G(E/K)

1. f is a bijection, with inverse g, from the subgroups of G(E/F ) onto the subfields

of E that contain F . In other words, K = EG(E/K) and H = G(E/EH).

2. [E :K] = |G(E/K)| and [K :F ] = |G(E/F )|/|G(E/K)|.
3. K is a normal extension of F iff G(E/K) is a normal subgroup of G(E/F ).

4. If K is a normal extension of F , then G(K/F ) ∼= G(E/F )
/
G(E/K).

Proof. 1) Suppose E ⊇ K ⊇ F . Since E is a splitting field over F , it is also a splitting

field over K. Hence E is a normal extension of K and so by definition of normal, K =

EG(E/K). By theorem 1.3.2, if H ≤ G(E/F ) then H = G(E/EH).

2) Suppose E ⊇ K ⊇ F . Again by theorem 1.3.2, [E :F ] = |G(E/F )| and [E :K] =

|G(E/K)|. Then |G(E/F )| = [E :F ] = [E :K][K :F ] = |G(E/K)|[K :F ], so [K :F ] =

|G(E/F )|/|G(E/K)|.

3) By lemma 1.4.1, K is a normal extension of F iff

∀σ ∈ G(E/F )∀t ∈ K
(
σ(t) ∈ K

)
. (1.4.1)

Because E is a normal extension of K, the fixed field of G(E/K) is K, so condition 1.4.1

is equivalent to

∀σ ∈ G(E/F )∀τ ∈ G(E/K)∀t ∈ K
(
τ
(
σ(t)

)
= σ(t)

)
. (1.4.2)

Condition 1.4.2 is equivalent to

∀σ ∈ G(E/F )∀τ ∈ G(E/K)∀t ∈ K(σ−1(τ(σ(t))) = t),

which means σ−1τσ fixes K, or σ−1τσ ∈ G(E/K). By theorem 9.1 in Gallian, this is

equivalent to G(E/K) ◁ G(E/F ).
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4) Suppose K is a normal extension of F . Let σ ∈ G(E/F ), and denote the restriction

of σ to K by σ. By lemma 1.4.1, σ(K) ⊆ K, so σ is an isomorphism to a subfield of K.

Viewing K as a finite dimensional vector space, we have an isomorphism to a subspace of

K with the same dimension as K, so σ(K) = K and σ ∈ G(K/F ). Since σ ◦ τ = σ ◦ τ ,

the mapping σ 7→ σ is a homomorphism, ϕ, from G(E/F ) to G(K/F ).

The kernel of ϕ consists of those σ such that σ is the identity automorphism on

K, that is, such that σ fixes K. Thus, the kernel is precisely G(E/K). By part (3),

G(E/K) ◁ G(E/F ), and by the First Isomorphism Theorem for Groups, G(E/F )
/
G(E/K)

is isomorphic to the range of ϕ.

...G(E/F ) .

G(E/F )
/
G(E/K)

. ϕ(G(E/F ))⊆ G(K/F ).

∼=

We know that

|G(K/F )| = [K :F ] =
∣∣∣G(E/F )

/
G(E/K)

∣∣∣ = ∣∣ϕ(G(E/F )
)∣∣ .

Thus the range of ϕ is a subgroup of G(K/F ) with the same size as G(K/F ), so the range

is G(K/F ), which finishes the proof.



2
Solvability

2.1 Solvability by radicals

DEFINITION 2.1.1 Let f ∈ F [x], F a field. f is solvable by radicals over F if there

are elements ai and ni such that

F = F0 ⊆ F (a1) = F1 ⊆ F1(a2) = F2 ⊆ · · · ⊆ Fr−1(ar) = Fr,

ani
i ∈ Fi−1, and f splits in Fr. Each of the fields Fi is called a radical extension of F .

When f is solvable by radicals, we can choose the fields Fi with some nice additional

properties. We see how to do this next.

An nth root of unity is any root of xn − 1. We say ω is a primitive root of unity if

{1, ω, ω2, . . . , ωn−1} is the set of all of the nth roots of unity. Let ωi be a primitive ith

root of unity. Note that if C ⊇ F ⊇ Q, then F (ωi) is the splitting field of xi − 1 over F .

Suppose that f is solvable by radicals, and suppose that the fields Ji, elements bi and

exponents mi, for i = 1, . . . , s, are as described by the definition. Let n be the maximum

of all of the exponents mi of the definition, and form the following chain of fields:

F (ω3) =L1 ⊆ L1(ω4) = L2 ⊆ · · · ⊆ Ln−3(ωn) = Ln−2 = K0 ⊆
K0(b1) = K1 ⊆ K1(b2) = K2 ⊆ · · · ⊆ Ks−1(bs) = Ks.

Rename the fields Li and Ki as a single sequence Fi, i = 1, . . . , r, where r = n −
2 + s; rename the elements ω3, . . . , ωn, b1, . . . , bs as a1, . . . , ar; and rename the integers

13
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3, 4, . . . , n,m1, . . . ,ms as n1, . . . , nr. Then f splits in Fr, a
ni
i ∈ Fi−1, and

F = F0 ⊆ F (a1) = F1 ⊆ F1(a2) = F2 ⊆ · · · ⊆ Fr−1(ar) = Fr.

LEMMA 2.1.2 Each of the fields Fi just described is a normal extension of the preceding

field, Fi−1.

Proof. This is certainly true when the corresponding ai is a primitive root of unity.

Otherwise, note that ai is a root of xni − ani
i ∈ Fi−1[x]. Let ω = ωni and consider the set

{ai, ωai, ω2ai, . . . , ω
ni−1ai}. Each of these elements is in Fi, each is a root of xni − ani

i ,

and they are distinct. Thus, xni − ani
i splits in Fi = Fi−1(ai), so Fi is the splitting field of

xni − ani
i over Fi−1 and by theorem 1.3.4, Fi is a normal extension of Fi−1.

LEMMA 2.1.3 G(Fi/Fi−1) is abelian.

Proof. There are two cases, depending on whether ai is a primitive root of unity or not.

We do just the latter case; the former is similar. Remember that the roots of unity are all

added first, so they are all in Fi−1.

Suppose that σ ∈ G(Fi/Fi−1). Since ani
i ∈ Fi−1, σ(a

ni
i ) = ani

i , so (σ(ai))
ni − ani

i =

σ(ani
i − ani

i ) = 0, or in other words, σ(ai) is a root of xni − ani
i . By the proof of the

previous lemma, σ(ai) = ω
j(σ)
ni ai for some integer j(σ). Now if τ ∈ G(Fi/Fi−1),

(σ ◦ τ)(ai) =σ(ωj(τ)
ni

ai) = ωj(τ)
ni

σ(ai) = ωj(τ)
ni

ωj(σ)
ni

ai =

ωj(σ)
ni

ωj(τ)
ni

ai = ωj(σ)
ni

τ(ai) = τ(ωj(σ)
ni

ai) = (τ ◦ σ)(ai).

Thus for all σ and τ in G(Fi/Fi−1), στ and τσ agree on ai.

By theorem 20.3 in Gallian, every b ∈ Fi can be written as
∑

cja
j
i , where cj ∈ Fi−1.

Then

(στ)(b) =
∑

cj((στ)(ai))
j =

∑
cj((τσ)(ai))

j = (τσ)(b).

Thus, στ = τσ and so G(Fi/Fi−1) is abelian as desired.

It need not be the case that Fr is a normal extension of F , but we can produce a

new tower of fields with the properties we already have verified, and with the additional

property that the ultimate field is a normal extension of F .

LEMMA 2.1.4 We may assume that Fr is a normal extension of F .

Proof. Let gi be the minimal polynomial for ai over F , and let bi, 1 ≤ i ≤ s be a list

of all roots of all of the gi, that is, s is the sum of the degrees of the gi. For convenience,



2.1 Solvability by radicals 15

let b1, . . . , br be a1, . . . , ar. Let N be the splitting field of the product g =
∏

gi, that is,

N = F (b1, . . . , bs) ⊇ Fr. We will extend the tower of fields:

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fr ⊆ Fr+1 ⊆ · · · ⊆ Fm = N.

For each root bi of gk, there is an isomorphism σi:F (ak) → F (bi) that fixes F , by the

lemma on page 348 in Gallian. By theorem 20.4, σi may be extended to an automorphism

σi on the splitting field N that fixes F (note that σi(g) = g). Now σi(Fr) is a subfield

of N that contains bi and is isomorphic to Fr; in particular, σi(Fr) may be viewed as

arising from a tower of fields formed using the elements σi(aj), 1 ≤ j ≤ r, and σi(Fj) =

σi(F (a1, . . . , aj)) = F (σi(a1), . . . , σi(aj)).

Thus, for each root bi we have a corresponding sequence of elements σi(aj) = ai,j , 1 ≤
j ≤ r, one of which is bi. Then we see that N = F (a1, a2, . . . , ar, ar+1,1, ar+1,2, . . . , as,r),

and

F =F1 ⊆ F2 ⊆ · · · ⊆ Fr ⊆ Nr+1,1 = Fr(ar+1,1) ⊆ Nr+1,2 = Nr+1,1(ar+1,2) ⊆ · · ·
⊆ Ns,r−1 = Ns,r−2(as,r−1) ⊆ Ns,r = Ns,r−1(as,r) = N.

Note that we add all of the elements {ai,1, ai,2, . . . , ai,r} just to get bi = ai,k; we do this so

that each field is obtained from the previous one by adding a root. Now we need to verify

that each ai,j is a root of some element in the previous field. There are two cases:

j = 1: We need to show some power of ai,1 is in Ni−1,r, or Fr if i = r+1. If i = r+1,

an1
i,1 = (σi(a1))

n1 = σi(a
n1
1 ) ∈ σi(F ) = F ⊆ Fr,

else

an1
i,1 = (σi(a1))

n1 = σi(a
n1
1 ) ∈ σi(F ) = F ⊆ Ni−1,r.

j > 1: We need to show some power of ai,j is in Ni,j−1:

a
nj

i,j = (σi(aj))
nj = σi(a

nj

j ) ∈ σi(Fj−1) = σi(F (a1, . . . , aj−1))

= F (σi(a1), . . . , σi(aj−1)) = F (ai,1, . . . , ai,j−1) ⊆ Ni,j−1.

By the Fundamental Theorem, G(Fr/Fi+1) ◁ G(Fr/Fi) and

G(Fi+1/Fi) ∼= G(Fr/Fi)
/
G(Fr/Fi+1),

and by lemma 2.1.3, this group is abelian. So we have a tower of groups:

{ϵ} = G(Fr/Fr) ◁ G(Fr/Fr−1) ◁ · · · ◁ G(Fr/Fi+1) ◁ G(Fr/Fi) ◁ · · · ◁ G(Fr/F ),

in which each factor group G(Fr/Fi)/G(Fr/Fi+1) is abelian. It’s not obvious that this

property of G(Fr/F ) is special, but in fact it is, and deserves a definition.
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DEFINITION 2.1.5 G is a solvable group if there are subgroups Hi of G such that

{e} = H0 ◁ H1 ◁ H2 ◁ · · · ◁ Hk = G

and such that all factor groups Hi+1/Hi are abelian.

Remember that we are investigating what it means for a polynomial f to be solvable

by radicals. Although f splits in Fr, Fr is likely to be much larger than the splitting field

of f , and it is not obvious that a property held by Fr has much to say about f . Let E be

the splitting field for f over F , so F ⊆ E ⊆ Fr. Since E is a normal extension of F , the

Fundamental Theorem says

G(E/F ) ∼= G(Fr/F )
/
G(Fr/E),

so G(E/F ) is a factor group of a solvable group.

LEMMA 2.1.6 A factor group of a solvable group is solvable.

Proof. Let H0 ◁ H1 ◁ H2 ◁ · · · ◁ Hk = G be a tower of groups that illustrates that G is

solvable, and let N ◁ G. Consider the groups

H0N
/
N ⊆ H1N

/
N ⊆ · · · ⊆ HkN

/
N = G

/
N.

Suppose that x ∈ Hi, y ∈ Hi+1, n,m ∈ N , xnN = xN ∈ HiN/N , ymN = yN ∈
Hi+1N/N . Then yNxN(yN)−1 = yxy−1N . Since Hi ◁ Hi+1, yxy

−1 ∈ Hi, so yxy−1N ∈
HiN/N and HiN/N ◁ Hi+1N/N .

Now consider two elements of (Hi+1N/N)/(HiN/N), (gnN)(HiN/N) = (gN)(HiN/N)

and (hmN)(HiN/N) = (hN)(HiN/N). We want to show these elements commute,

that is, (ghN)(HiN/N) = (hgN)(HiN/N). It suffices to show that (hgN)−1(ghN) =

g−1h−1ghN ∈ HiN/N . Since Hi+1/Hi is abelian, g
−1h−1gh ∈ Hi, this is true.

To show that some polynomial f is not solvable by radicals, it is therefore sufficient to

show that G(E/F ) is not solvable, where E is the splitting field of f . We will show that

for f = 3x5 − 15x+ 5, G(E/F ) = S5, and that Sn is not solvable when n ≥ 5.

2.2 Unsolvability of Sn

DEFINITION 2.2.1 Let U(G) be the set of commutators of the group G:

U(G) = {xyx−1y−1|x, y ∈ G}.

The commutator subgroup of G, denoted G′, is the smallest subgroup containing U(G),

that is, G′ = ⟨U(G)⟩.
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LEMMA 2.2.2 If X is any subset of G and for all g ∈ G, gXg−1 ⊆ X, then ⟨X⟩ is a

normal subgroup of G.

Proof. Note that the hypothesis implies that for all g ∈ G, X ⊆ g−1Xg. Suppose that

y ∈ ⟨X⟩; we need to show that for all g ∈ G, gyg−1 ∈ ⟨X⟩. Let H = g−1⟨X⟩g; H is

a subgroup of G, called a conjugate of ⟨X⟩ (see problem 1, page 91 in Gallian). Since

H = g−1⟨X⟩g ⊇ g−1Xg ⊇ X, H is a subgroup containing X and therefore H ⊇ ⟨X⟩, so
y ∈ H. Now gyg−1 ∈ gHg−1 = gg−1⟨X⟩gg−1 = ⟨X⟩.

LEMMA 2.2.3 G′ ◁ G.

Proof. It suffices to check that gU(G)g−1 ⊆ U(G), that is, that for any x, y, and g in

G, gxyx−1y−1g−1 is a commutator. Write

gxyx−1y−1g−1 = (gxg−1)(gyg−1)(gx−1g−1)(gy−1g−1)

= uvu−1v−1,

where u = gxg−1 and v = gyg−1.

LEMMA 2.2.4 G/G′ is abelian.

Proof. We need to show that xyG′ = yxG′ for all x and y in G. By properties of cosets,

this is true if and only if (yx)−1xy ∈ G′. This is true because (yx)−1xy = x−1y−1xy ∈
U(G) ⊆ G′.

LEMMA 2.2.5 If H ◁ G and G/H is abelian, then H ⊇ G′.

Proof. For any x and y in G, xyH = yxH, so x−1y−1xyH = H or x−1y−1xy ∈ H—that

is, H contains every commutator, so H ⊇ G′.

DEFINITION 2.2.6 G(0) = G and G(k) =
(
G(k−1)

)′
for k ≥ 1.

THEOREM 2.2.7 G is solvable iff G(k) = {e} for some k.

Proof. If G(k) = {e} then {e} = G(k) ◁ G(k−1) ◁ · · · ◁ G′′ ◁ G′ ◁ G and G(i−1)/G(i) is

abelian.

Suppose {e} = Nk ◁ Nk−1 ◁ · · · ◁ N1 ◁ N0 = G and Ni/Ni+1 is abelian. By

lemma 2.2.5, N1 ⊇ G′, N2 ⊇ N ′
1 ⊇ G′′, and by an easy induction, Nk ⊇ G(k), so {e} =

G(k).

LEMMA 2.2.8 G(i) ◁ G for all i.

Proof. Suppose that N ◁ G; we prove that N ′ ◁ G. Suppose g ∈ G and u ∈ N ′; we

need to prove that gug−1 ∈ N ′. By lemma 2.2.2, it suffices to prove that if u ∈ U(N)
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then gug−1 ∈ U(N). This is almost identical to the proof of lemma 2.2.3. Now an easy

induction completes the proof.

LEMMA 2.2.9 Let G = Sn, n ≥ 5. For every k, G(k) contains every 3-cycle in Sn.

Proof. Suppose N ◁ G and N contains all 3-cycles, so N ′ contains the commutator

(123)(145)(321)(541) = (124). N ′ is normal in G, so for all π ∈ Sn, π(124)π
−1 ∈ N ′.

Choose π so that π(1) = i, π(2) = j, π(4) = k. Then (ijk) = π(124)π−1, so every 3-cycle

is in N ′.

Now we prove the lemma by induction on k. G ◁ G and G contains all 3-cycles, so

G′ contains all 3-cycles. By the induction hypothesis, G(k) contains all 3-cycles. By the

previous lemma, G(k) ◁ G, so G(k+1) =
(
G(k)

)′
contains all 3-cycles.

THEOREM 2.2.10 Sn is not solvable when n ≥ 5.

Proof. If Sn is solvable then for some k, G(k) = {e}. But also G(k) contains all 3-cycles,

a contradiction.

2.3 Unsolvability of the quintic

The polynomial f = 3x5−15x+5 is irreducible over the rationals, by Eisenstein’s criterion.

By 20.6 in Gallian, it has no multiple roots, and by the Fundamental Theorem of Algebra

(i.e., C is algebraically closed), it has 5 distinct roots in C. It is not hard to see that f has

exactly 3 real roots, so it also has roots a± bi for some a and b, by problem 65 in chapter

15 of Gallian.

Denote the roots of f by r1, . . . , r5, so the splitting field of f is Q(r1, . . . , r5) = Q(r).

Any σ ∈ G(Q(r)/Q) permutes the roots ri, and in fact σ is completely determined by

its action on the roots. In other words, G(Q(r)/Q) ≤ S5 (there is of course a hid-

den isomorphism here). Since [Q(r) :Q] = [Q(r) :Q(r1)][Q(r1) :Q] = [Q(r) :Q(r1)] · 5,
[Q(r) :Q] = |G(Q(r)/Q)| is divisible by 5.

LEMMA 2.3.1 If p is prime and p divides |G| = n, then G has an element of order p.

Proof. What elements of G are solutions to xp = 1? Certainly x = 1 is a root. If y ̸= 1

is a solution, then y has order p, so it suffices to show that there are at least 2 solutions.

Let S = {(a1, . . . , ap)|
∏

ai = 1}. For any choice of a1, . . . , ap−1, there is a unique

ap such that (a1, . . . , ap) is in S, so |S| = np−1. If a and b are in S, say a ≡ b if each

may be obtained by rotating the other—for example, (a1, . . . , ap) ≡ (a3, . . . , ap, a1, a2). If

ai = aj for all i and j, then (a1, . . . , ap) forms an entire equivalence class. Otherwise, since

p is prime, there must be exactly p members of each equivalence class. Each solution c of

xp = 1 corresponds to an equivalence class {(c, c, c, . . . , c)}, and vice versa, so the number
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of solutions is equal to the number of one element equivalence classes, say r. Let s be the

number of p-element equivalence classes. Then np−1 = r + sp. By hypothesis p|n, so p|r.
Since r ≥ 1, this means r ≥ 2 as desired.

Returning to G(Q(r)/Q), we now see that this group contains an element of order

5, which must be a 5-cycle. Let σ:C → C be defined by σ(x + yi) = x − yi; σ is an

automorphism (example 2, chapter 15). Since σ permutes the roots of f , its restriction to

Q(r) is in G(Q(r)/Q), and clearly σ has order 2. Thus, G(Q(r)/Q) contains both a 2-cycle

and a 5-cycle. Without loss of generality we may assume that G(Q(r)/Q) contains (12)

and (12345). Finally, it is a bit tedious but not difficult to prove that if H is a subgroup of

S5 and H contains (12) and (12345), then H = S5, so in fact G(Q(r)/Q) ∼= S5. Since S5

is not solvable, f is not solvable by radicals. Since this particular quintic is not solvable

by radicals, it is clear also that there can be no “formula” for the roots of a quintic.

In fact, not even one of the roots may be written as an expression in radicals, since if

it could, we could divide out the corresponding linear factor and then solve the resulting

quartic completely, giving a complete solution of the quintic in radicals. This argument

works only for fifth degree polynomials; here is a more general way to talk about individual

roots.

THEOREM 2.3.2 Suppose f ∈ F [x] has roots r1, . . . , rn, and that for all i, F (r1) ∼=
F (ri), by an isomorphism σi that fixes F . If there is a radical extension of F containing

F (r1) then there is a radical extension of F in which f splits, that is, f is solvable by

radicals.

Proof. Let Fi = Fi−1(ai), i = 1, . . . , s, be the tower of fields forming the radical exten-

sion containing F (r1). Let gi be the minimal polynomial of ai over F , and let g = f
∏

gi.

Let N be the splitting field of g over F . By theorem 20.4 in Gallian, the isomorphism σi

from F (r1) to F (ri) can be extended to an automorphism on N . Then σi(Fs) is a radical

extension containing F (ri), formed using the elements σi(aj). As in lemma 2.1.4, each of

the other roots of g is also contained in a copy of Fs, and we may put all of these radical

extensions together into a single tower of fields culminating in N . Thus N is a radical

extension of F that contains the splitting field of f , as desired.

So as long as the roots of a polynomial “look alike,” if one of them can be written as an

expression in radicals, all of them can and the corresponding Galois group is solvable. In

particular, if the Galois group is Sn, n ≥ 5, then the roots are individually not expressible

by radicals.
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2.4 No formula for roots

We have seen that for F = Q there is a specific fifth degree polynomial that is not solvable

by radicals. This implies that there can be no formula for the roots of polynomials of

degree greater than or equal to five, where by “formula” we mean an expression using the

four simple arithmetic operations and arbitrary kth roots.

We can show directly that no such formula is possible, for any F of characteristic 0.

Consider the “general” polynomial f(t) = tn − a1t
n−1 + · · ·+ (−1)nan, n ≥ 5. A formula

for a root of f(t) would be an expression containing the symbols ai as placeholders for

elements of F . We may instead interpret f(t) as a specific polynomial in F (a1, . . . , an), the

field of rational functions in the symbols ai. Now the question is whether f(t) is solvable

by radicals over F (a1, . . . , an).

Let E be a splitting field for f(t), so in E

n∏
i=1

(t− xi) = f(t).

Then E = F (x1, . . . , xn) and the coefficients ai are the elementary symmetric functions in

the xi. As we saw in theorem 1.2.3, G(E/F (a)) ∼= Sn. Since Sn is not solvable, f(t) is not

solvable by radicals over F (a), so there can be no formula for any root of f(t).
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